KNESER COLORINGS OF POLYHEDRA

BY

K.S. SARKARIA

1. Introduction

(1.1) It is well known that if a 1-dimensional simplicial complex, i.e., a "graph", K^1 , embeds in a 2-dimensional manifold M^2 , then its chromatic number is less than a certain constant c, which depends only on the topology of M^2 . We have proved elsewhere various generalisations of this result which apply to higher dimensional simplicial complexes K^n : see [18], [19] and [20].

In this paper we turn things around and show that if a simplicial complex K^n can be suitably colored by not too many colors, then it p.l. embeds in a given \mathbb{R}^m . As typical specimens of such results we have the following two:

THEOREM 2 (2.5.1). Let $G(K_{\Box}^{n})$ denote the graph whose vertices are pairs (v,θ) where v is a vertex of K^{n} and θ a maximal simplex of K^{n} not containing v, with (v_{1}, θ_{1}) adjacent to (v_{2}, θ_{2}) iff $v_{1} \in \theta_{2}$ and $v_{2} \in \theta_{1}$. If $G(K_{\Box}^{n})$ has chromatic number $\leq m + 1$ and $2m \geq 3$ (n + 1), or else n = 1 and m = 2, then K^{n} p.l. embeds in \mathbb{R}^{m} .

THEOREM 6 (3.2.1). Let $G(X^n)$ denote the graph whose vertices X_i^n are closures of the non-singular edge-less components of the underlying polyhedron X^n of K^n , with X_i^n adjacent to X_j^n iff X_i^n is disjoint from X_j^n . If $G(X^n)$ is bichromatic and $n \neq 2$ then K^n p.l. embeds in \mathbb{R}^{2n} .

Note that Theorem 6 above includes the well known fact that an *n*-pseudomanifold p.l. embeds in \mathbb{R}^{2n} . The hypotheses of this theorem are relaxed considerably in Theorem 8 (3.4.2) whose statement involves some equivariant cohomology.

In Theorem 2 above, K_{\Box}^n denotes a self-dual poset, the dual deleted product, which we associate canonically to each simplicial complex K^n . Theorems 3 and 4 of (2.5) are analogues of Theorem 2 for graphs $G(K_{\Sigma}^n)$ arising out of some sub self-dual posets K_{Σ}^n of K_{\Box}^n . Theorem 3 is in fact a common generalization of Theorem 2 above and the Lovász-Kneser Theorem [12] which appears in this setting only as a very special colorability implies embeddability

Received August 31, 1987.

^{© 1989} by the Board of Trustees of the University of Illinois Manufactured in the United States of America