COMPLEMENTED COPIES OF c_0 IN l^{∞} -SUMS OF BANACH SPACES

BY

DENNY LEUNG AND FRANK RÄBIGER¹

1. Introduction

By a result of W.B. Johnson [6], there exists a sequence (G_n) of finite dimensional Banach spaces such that for any separable Banach space G, the l^{∞} -sum of (G_n) contains an isometric 1-complemented copy of G'. From this we see that the l^{∞} -sum of a family $(E_{\gamma})_{\gamma \in \Gamma}$ of Banach spaces may contain many very different complemented infinite dimensional subspaces even if none of the spaces E_{γ} does. However, the situation becomes quite different when we consider complemented subspaces isomorphic to c_0 . In fact, our main result shows that if the cardinality of the index set Γ is smaller than the first real-valued measurable cardinal, then the l^{∞} -sum of $(E_{\gamma})_{\gamma \in \Gamma}$ contains a complemented copy of c_0 if and only if one of the spaces E_{γ} does. From this we obtain that the l^{∞} -sum of certain families of Grothendieck spaces is again a Grothendieck space.

Our terminology is standard. However, we want to explain some frequently used terms and fix some notations. For a (real) Banach space E we denote by E' the dual and by E'' the bidual of E. On E', the weak* and weak topologies are the topologies $\sigma(E', E)$ and $\sigma(E', E'')$ respectively. A sequence (x_i) in E is called *weakly summable* if

$$\sum |\langle x_i, x' \rangle| < \infty \quad \text{for all } x' \in E'.$$

E is said to contain a complemented copy of c_0 if *E* has a complemented subspace isomorphic to c_0 . Given a set Γ , we denote by $|\Gamma|$ the cardinality of Γ . If $(E_{\gamma})_{\gamma \in \Gamma}$ is a family of Banach spaces and $1 \le p \le \infty$, the l^p -sum of $(E_{\gamma})_{\gamma \in \Gamma}$ is the space $(\Sigma \oplus E_{\gamma})_{l^p(\Gamma)}$ which consists of all $x = (x(\gamma))_{\gamma \in \Gamma}$ such that $x(\gamma) \in E_{\gamma}$ for all γ and

$$\sum_{\gamma \in \Gamma} \|x(\gamma)\|^p < \infty \quad \left(\sup_{\gamma} \|x(\gamma)\| < \infty \text{ if } p = \infty \right),$$

© 1990 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received February 1, 1988.

¹Work of the second author was supported by Deutsche Forschungsgemeinschaft (DFG).