HOLOMORPHIC FUNCTIONS WITH POSITIVE REAL PART ON THE UNIT BALL OF C^{n}

BY
John N. McDonald

Consider the set \mathscr{P} of holomorphic functions on the open unit ball B of C^{n} which have positive real part and take the value 1 at 0 . Except in the case where $n=1$, the problem of identifying the extreme elements of the convex set \mathscr{P} is unsolved. Some results on this interesting and natural question have been obtained by Forelli in papers mentioned below and there is a discussion of it in the book of Rudin [7]. It seems, however, that a complete and satisfactory solution is not close at hand.

In this paper we study the relationship between the extreme elements of \mathscr{P} and the extreme elements of the closed unit ball \mathscr{U} of the space $H^{\infty}(B)$ via the representation

$$
\begin{equation*}
f(z)=(1+g(z)) /(1-g(z)) \tag{1}
\end{equation*}
$$

where g is a member of \mathscr{U} which vanishes at 0 . Forelli has shown that the function (1) is an extreme point of \mathscr{P} in the cases where

$$
g(z)=g\left(z_{1}, z_{2}, \ldots, z_{n}\right)=z_{1}^{2}+z_{2}^{2}+\cdots+z_{n}^{2}
$$

and

$$
g(z)=c z^{\alpha}=c z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}} \cdots z_{n}^{\alpha_{n}}
$$

where the greatest common divisor of the positive integers α_{j} is 1 and c is a constant chosen so that

$$
\|g\|=\sup \{|g(z)|: z \in B\}=1
$$

See [1], [3]. Forelli has also produced sufficient conditions on a homogeneous polynomial p in order that $(1+p) /(1-p)$ be extreme in \mathscr{P} [3]. One of our main results implies that, if g is a homogeneous polynomial of degree $k \geq 1$ which is also an extreme point of \mathscr{U}, then there exists a polynomial r of degree $\leq k-1$ such that $(1+g+r) /(1-g)$ is an extreme point of \mathscr{P}. We also use our results to derive the examples of Forelli described above, as well as some new examples of extreme members of \mathscr{P}.

Received January 4, 1988.

