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Introduction

Let X be a smooth, complex projective algebraic surface (which will be
assumed throughout the rest of this paper). For any smooth variety V of
dimension n, we will denote by CHk(V) the corresponding Chow group of
algebraic cycles of codimension k in V (modulo rational equivalence), and
write CHn_k(V) CHk(V). Our main focus of attention is on the subgroup
Ao(X) of zero-cycles of degree 0 in CHo(X), and more particularly on
T(X) kernel of the Albanese map : Ao(X) Alb(X). Before stating the
main theorem ((0.3)), we introduce the following terminology.

(0.1) DEFINITION. Let Bo(X) be a subgroup of Ao(X). We say that
Ao(X)/Bo(X) is finite dimensional if there exists a (possibly reducible)
smooth curve E, a cycle z in CH2(E X) such that the composite

y( e) z--z-, Ao( X) ---, Ao( X) /Bo( X)

is surjective.

Example. We can write T(X)= Ao(X)/Bo(X)where Bo(X) is defined
as follows. By Poincar6’s complete reducibility theorem, there exists an
abelian variety B and a homomorphism f such that the composite

B f- Ao(X) AIb(X)

is an isogeny (see [8: (1.2)]). Clearly T(X) + f(B) A0(X), moreover using
T(X) torsionless [7] it follows that f(B) N T(X) 0. Now set Bo(X) f(B).
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