A VERSALITY THEOREM FOR TRANSVERSELY HOLOMORPHIC FOLIATIONS OF FIXED DIFFERENTIABLE TYPE

BY

J. GIRBAU¹

Introduction

The aim of this paper is to give a versality theorem (analogous to that of Kuranishi for compact complex manifolds [6]) for transversely holomorphic foliations of fixed differentiable type (Theorem 7.1).

Throughout M will denote a compact C^{∞} -manifold endowed with a transversely holomorphic foliation \mathscr{F} defined by a foliate cocycle $\{U_i, f_i, Z, \gamma_{ij}\}$, where $\{U_i\}$ is an open covering of M, $f_i: U_i \to Z$ are C^{∞} -submersions, Z is a complex manifold and $\{\gamma_{ij}\}$ are local holomorphic transformations of Z such that $f_i = \gamma_{ij} \circ f_j$. A family of deformations \mathscr{F}^t of \mathscr{F} parametrized by a germ of analytic space (T, o) is defined by a family of C^{∞} -submersions, $f_i^t: U_i \to Z$, parametrized by (T, o), depending holomorphically on t for each $x \in U_i$, and a family γ_{ij}^t of local holomorphic transformations of Z parametrized by the same (T, o), such that $f_i^t = \gamma_{ij}^t \circ f_j^t$, with $f_i^o = f_i$ and $\gamma_{ij}^o = \gamma_{ij}$. Two families of deformations, \mathscr{F}^t and $\mathscr{F}^{\prime t}$, parametrized by the same (T, o) are said to be *isomorphic* if there exists a C^{∞} -family h^t of diffeomorphisms of Mparametrized by (T, o), with $\mathscr{F}^{\prime t} = (h^t)^* \mathscr{F}^t$.

Girbau, Haefliger and Sundararaman [3] proved the existence of a germ of analytic space (S, o) (versal space) parametrizing a family of deformations \mathscr{F}^s of \mathscr{F} (versal family), with the following property: if $\mathscr{F'}^t$ is another family of deformations of \mathscr{F} parametrized by (T, o), then there exists a morphism of germs of analytic spaces, $f: (T, o) \to (S, o)$, such that $\mathscr{F}^{f(t)}$ is isomorphic to $\mathscr{F'}^t$. Moreover the tangent map $d_o f$ of f at o is unique.

Most of the computable examples have a smooth versal space; that is, S is the germ at the origin of a complex vector space, concretely the cohomology space $H^1(M, \Theta'^r)$, where Θ'^r is the sheaf of germs of local C^{∞} -vector fields generating flows preserving \mathscr{F} . There is a useful sufficiency criterion for the

© 1992 by the Board of Trustees of the University of Illinois Manufactured in the United States of America

Received October 30, 1990

¹⁹⁹¹ Mathematics Subject Classification. Primary 58H15; Secondary 57R32, 32G05.

¹Research supported by the DGICYT.