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ALGEBRAS TO STANDARD FACTORS OF TYPE II
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1. Introduction

In the recent applications of nonstandard analysis the following method of
research has been acknowledged to be useful: To find a construction of a
standard .object by taking a standard part of a nonstandard object which is a
nonstandard extension of a standard object or a well-defined internal object.
By this method we can construct a complicated mathematical structure from
a much simpler structure in the nonstandard universe. Loeb’s construction [7]
of measure spaces from simpler internal measure spaces has been known as
one of the most successful results along with this line. For Banach space
theory Henson and Moore [5] have found a construction of Banach spaces,
called nonstandard hulls, from internal Banach spaces, and succeeded in
characterizing several deep properties of Banach spaces by simpler proper-
ties of the nonstandard hulls obtained from their nonstandard extensions. In
this paper we will apply this method to the theory of operator algebras. We
will give a construction of a factor of type II1 from a much simpler internal
matrix algebra, and investigate some properties of this factor by the methods
of infinitesimal analysis and hyperfinite combinatrics.
To summarize our construction in advance, let u be a nonstandard natural

number in an l-saturated nonstandard universe. Consider the internal
algebra of u u matrices over the internal complex numbers, and pay
attention to two norms on this algebra. One is the operator norm and the
other is the normalized Hilbert-Schmidt norm. Collect all matrices with finite
operator norm, and identify two such matrices if the normalized Hilbert-
Schmidt norm of their difference is infinitesimal. The resulting algebra,
equipped with the quotient norm that comes from the operator norm, is our
factor of type II 1. Section 2 covers the fact that this is really avon Neumann
algebra and a factor of type 111. Section 3 proves the nonseparability of its
representations, and Section 4 proves that it is not approximately finite. The
proofs of these two results simplifies considerably the corresponding proofs
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