ON THE PARITY OF PARTITION FUNCTIONS

J.L. Nicolas and A. SÁrköZy ${ }^{1}$

Section 1

For $n=1,2, \ldots, p(n)$ denotes the number of unrestricted partitions of n, and $q(n)$ the number of partitions of n into distinct parts, and we write $p(0)=q(0)=1, p(-1)=q(-1)=p(-2)=q(-2)=\cdots=0$. If N, b are positive integers, a is an integer, then let $E_{a, b}(N)$ denote the number of non-negative integers n such that $n \leq N$ and $p(n) \equiv a \bmod b$.

Starting out from a question of Ramanujan, in 1920 MacMahon [3] gave an algorithm for determining the parity of $p(n)$. Since then, many papers have been written on the parity of $p(n)$. In particular, in 1959 Kolberg proved that $p(n)$ assumes both even and odd values infinitely often (for $n \geq 0$). His proof was based on Euler's identity

$$
p(n)+\sum_{k \geq 1}(-1)^{k}\left(p\left(n-s_{k}\right)+p\left(n-t_{k}\right)\right)=0
$$

where $s_{k}=\frac{1}{2} k(3 k-1), t_{k}=\frac{1}{2} k(3 k+1)$ and the summation extends over all terms with a non-negative argument. It follows from this identity that

$$
\begin{equation*}
p(n)+\sum_{k \geq 1}\left(p\left(n-s_{k}\right)+p\left(n-t_{k}\right)\right) \equiv 0 \bmod 2 \tag{1}
\end{equation*}
$$

Other proofs have been given for Kolberg's theorem by Newman [5] and Fabrykowski and Subbarao [1]. Parkin and Shanks [7] have computed the parity of $p(n)$ up to $n=2039999$. Their calculation suggest that $E_{0,2}(N) \sim$ $E_{1,2}(N) \sim N / 2$. Mirsky [4] has proved the only quantitative result on the frequency of the odd values and even values of $p(n)$. In fact, starting out

[^0]
[^0]: Received June 25, 1993.
 1991 Mathematics Subject Classification. Primary 11P83.
 ${ }^{1}$ Research partially supported by the Hungarian Foundation for Scientific Research, Grant No. 1901, by CNRS, GDR Mathématiques Informatique, and by MEN, EA 619.

