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1. Introduction

In this paper G denotes a finite group and M(G) the set of all maximal subgroups
of G.

Recall that a matroid (M, 2-) is a finite set M together with a set 2 of subsets of
M (we call X c_C_ M independent if and only if X 2) such that:

every subset of an independent set is independent, and every one-element subset
is independent (i.e. (M, 2") is a simplicial complex)

and
ifA, B 2" andlAI < nl, then there is anx B\A such that A U {x} is

independent.
Examples of matroids are:

1. Let M be the (non-trivial) vectors ofa finite vectorspace, 2" the linear indepen-
dent sets.

2. Let M be the set of edges of a graph 1-’ and 2" the set of all circuit-free subsets
of M.

3. Let M M1 t3 M2 MI be a partition of M and

2":={X

_
M: IXCMil <_ for alli <l}.

Then (M, 2") is .a matroid. This matroid is called the partition matroid of the
partition (Mi)i <_l of M.

Let := (H0 > H1 > > /-//) denote a chief-series of G (i.e., a maximal
chain of normal subgroups of G). Then M(G) is the disjoint union of the sets
K := {U @ M(G): HiU G, Hi_l_ <_ U}.

So, with 2- := {X

_
M(G): IX I")Kil _< for all/ < /}, we have a partition

matroid (M(G), 2"7). We call the independent subsets (i.e., the elements of ZT-t)
7-/-independent.
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