INDEPENDENCE AND MAXIMAL SUBGROUPS

MICHAEL WEIDNER¹

Dedicated to O. H. Kegel on the occasion of his 60th birthday

1. Introduction

In this paper G denotes a finite group and M(G) the set of all maximal subgroups of G.

Recall that a matroid (M, \mathcal{I}) is a finite set M together with a set \mathcal{I} of subsets of M (we call $X \subseteq M$ independent if and only if $X \in \mathcal{I}$) such that:

every subset of an independent set is independent, and every one-element subset is independent (i.e. (M, \mathcal{I}) is a simplicial complex)

and

if $A, B \in \mathcal{I}$ and |A| < |B|, then there is an $x \in B \setminus A$ such that $A \cup \{x\}$ is independent.

Examples of matroids are:

- 1. Let M be the (non-trivial) vectors of a finite vectorspace, \mathcal{I} the linear independent sets.
- 2. Let M be the set of edges of a graph Γ and \mathcal{I} the set of all circuit-free subsets of M.
- 3. Let $M = M_1 \cup M_2 \cup \cdots \cup M_l$ be a partition of M and

 $\mathcal{I} := \{ X \subseteq M \colon |X \cap M_i| \le 1 \text{ for all } i \le l \}.$

Then (M, \mathcal{I}) is a matroid. This matroid is called the partition matroid of the partition $(M_i)_{i \leq l}$ of M.

Let $\mathcal{H} := (H_0 > H_1 > \cdots > H_i)$ denote a chief-series of G (i.e., a maximal chain of normal subgroups of G). Then M(G) is the disjoint union of the sets $\mathcal{K}_i := \{U \in M(G): H_i U = G, H_{i+1} \leq U\}.$

So, with $\mathcal{I}_{\mathcal{H}} := \{X \subseteq M(G) : |X \cap \mathcal{K}_i| \leq 1 \text{ for all } i < l\}$, we have a partition matroid $(M(G), \mathcal{I}_{\mathcal{H}})$. We call the independent subsets (i.e., the elements of $\mathcal{I}_{\mathcal{H}}$) \mathcal{H} -independent.

Received October 22, 1993

¹⁹⁹¹ Mathematics Subject Classification. Primary 20C20, 05B35.

¹The main part of this paper was written during a stay at the University of Chicago. The author would like to thank the "Deutsche Forschungsgemeinschaft" for their generous support.

^{© 1996} by the Board of Trustees of the University of Illinois Manufactured in the United States of America