GENERALIZATIONS OF SOME COMBINATORIAL INEQUALITIES OF H. J. RYSER¹

BY

MARVIN MARCUS AND WILLIAM R. GORDON

I. Introduction and results

In a recent interesting paper, H. J. Ryser obtained the following results [1]. Let H be a nonnegative hermitian matrix of rank e and order v with eigenvalues $\lambda_1, \dots, \lambda_v$, where $\lambda_1 \geq \dots \geq \lambda_e > \lambda_{e+1} = \dots = \lambda_v = 0$. Let hbe an integer, h > 1, such that $e \leq h \leq v$, and define k and λ by

trace
$$(H) = kh$$
, $\lambda_h \leq k + (h-1)\lambda \leq \lambda_1$.

Define the matrix B of order h by

$$B = (k - \lambda)I + \lambda J,$$

where I is the identity matrix and J is the matrix all of whose entries are 1's. Let

$$B_0 = B \dotplus 0,$$

where the matrix B_0 of order v is the direct sum of the matrix B of order h and the zero matrix of order (v - h). Let

 $k^* = \text{trace } (H)/v, \qquad \mu = \sum_{i=1}^{v} \sum_{j=1}^{v} h_{ij}, \qquad \lambda^* = ((\mu/v) - k^*)/(v-1).$

Define the matrix B^* of order v by

$$B^* = (k^* - \lambda^*)I + \lambda^*J.$$

Finally let $C_r(A)$ denote the r^{th} compound matrix of A, and let $P_r(A)$ denote the r^{th} induced power matrix of A (for definitions of C_r and P_r see [1]). Then we have

THEOREM 1. The matrices H and B_0 satisfy

trace
$$(C_r(H)) \leq \text{trace} (C_r(B_0))$$
 $(1 \leq r \leq v).$

Equality holds for $r = 1, h + 1, \dots, v$. If $k + (h - 1)\lambda \neq 0$ and equality holds for an r, $1 < r \leq h$, or $k + (h - 1)\lambda = 0$ and equality holds for an r, 1 < r < h, then there exists a unitary U such that $H = U^{-1}B_0 U$.

THEOREM 2. The matrices H and B^* satisfy

trace
$$(C_r(H)) \leq \text{trace} (C_r(B^*))$$
 $(1 \leq r \leq v).$

Received May 18, 1962.

¹ This research was supported by the Air Force Office of Scientific Research.