THE MODULAR REPRESENTATION ALGEBRA OF A FINITE GROUP

BY J. A. Green¹

1. Representation algebras

1.1. Notation and terminology.

G is a finite group, with unit element e.

k is a field of characteristic p.

By a *G-module M* is meant a (k, G)-module. Elements of G act as right operators on M, and $me = m \ (m \ \epsilon M)$. The k-dimension dim M of M is assumed finite. For example,

 $\Gamma = \Gamma(k, G)$ is the regular G-module, i.e., the group algebra of G over k, regarded as G-module, and

 k_{G} is the *unit G-module*, i.e., the field k, made into a "trivial" G-module, i.e., $\kappa x = \kappa \ (\kappa \epsilon k, x \epsilon G)$. For any G-module M,

 $\{M\}$ is the class of all G-modules isomorphic to M.

 V_i (*i* runs over a suitable index set *I*) is a set of representatives of the classes $\{V_i\}$ of indecomposable *G*-modules. The number of these indecomposable classes is finite if and only if either p=0, or p is a finite prime such that the Sylow p-subgroups of G are cyclic (D. G. Higman [5]).

 F_j $(j=1, \dots, n)$ is a set of representatives of the classes $\{F_j\}$ of irreducible G-modules. The number n of these is always finite. If k is algebraically closed, n is equal to the number of p-regular classes of G (R. Brauer, see [1], [2]).

If M', M'' are G-modules, M' + M'' denotes their direct sum. If M is a G-module, and s a nonnegative integer, sM denotes the direct sum of s isomorphic copies of M.

1.2. Let c be an arbitrary commutative ring with identity element. Then the representation algebra $A_{\mathfrak{c}}(k,G)$ of the pair (k,G), with coefficients in c, is defined as follows. It is the c-module generated by the set of all isomorphism classes $\{M\}$ of G-modules, subject to relations $\{M\} = \{M'\} + \{M''\}$ for all M, M', M'' such that $M \cong M' + M''$, and equipped with the bilinear multiplication given by $\{M\}\{M'\} = \{M \otimes M'\}$. Here $M \otimes M' = M \otimes_k M'$ is made G-module by $(m \otimes m')x = mx \otimes m'x$ $(m \in M, m' \in M', x \in G)$. By the Krull-Schmidt theorem for G-modules, $A_{\mathfrak{c}}(k,G)$ is free as c-module, and the $\{V_i\}$ $(i \in I)$ form a c-basis. $A_{\mathfrak{c}}(k,G)$ is a commutative, associative algebra over \mathfrak{c} , and has identity element $1 = \{k_G\}$.

The Grothendieck algebra $A_{\mathfrak{c}}^*(k,G)$ is the quotient of $A_{\mathfrak{c}}(k,G)$ by the ideal J

Received August 3, 1961.

¹ This work was done while the author was supported by a grant from the National Science Foundation at the Institute for Advanced Study, and under an Army contract at Cornell University.