PERIODIC HOMEOMORPHISMS OF THE 3-SPHERE ${ }^{1}$

by
Edin Moise

1. Statement of results

Let \mathfrak{M} be a triangulated 3 -sphere, and let f be a periodic simplicial homeomorphism of \mathfrak{M} onto itself. Suppose that f preserves orientation and has a fixed point; let F be the fixed-point set of f; and let n be the period of f. It has been shown by P. A. Smith $[\mathrm{S}]^{2}$ that when n is a prime, F is always a (simple closed) polygon; and we shall show, in the last section of the present paper, that for arbitrary n the same conclusion follows. In the rest of this paper, therefore, we shall assume that F is a polygon. A well-known conjecture due to Smith, discussed by Eilenberg in [E], asserts that F is never knotted.

A partial solution of Smith's problem has been given by Montgomery and Samelson [MS]. They have shown that if f is an involution (i.e., is of period 2), then (1) if F is a simplicial standard torus knot, then F is unknotted, and (2) if F is unknotted, then f is equivalent to a rotation.

In the present paper, we generalize the second of these results, to homeomorphisms of arbitrary period. Thus our main result is:
1.1. Theorem. If $f: \mathfrak{M} \rightarrow \mathfrak{M}$ is periodic and preserves orientation, and F is unknotted, then f is equivalent to a rotation.

The proof is based on the following preliminary result:
1.2. Theorem. There is a polyhedral disk with handles M_{1} such that the boundary of M_{1} is F and such that the iterated images

$$
M_{i}=f^{i-1}\left(M_{1}\right)
$$

intersect one another only in F.
Here by a disk with handles we mean, of course, a compact, connected, orientable 2 -manifold with boundary, bounded by a 1 -sphere.

Theorem 1.2 has been proved, for involutions, by Montgomery and Samelson.

2. 2-spines of 3-dimensional complexes

Let \mathfrak{Z} be a complex, and let n be a positive integer. Then $\beta_{n} \mathbb{R}$ denotes the set of all points of \mathbb{R} that do not have open neighborhoods in \mathbb{R}, homeomorphic to Euclidean n-space E^{n}. The " n-dimensional interior" $\mathbb{R}-\beta_{n} \mathbb{R}$

[^0]
[^0]: Received July 27, 1960.
 ${ }^{1}$ Sponsored by the Office of Ordnance Research, U.S. Army and the Air Force Office of Scientific Research.
 ${ }^{2}$ Letters in square brackets refer to the bibliography at the end of the paper.

