THE LINEAR p-ADIC RECURRENCE OF ORDER TWO
 Dedicated to Hans Rademacher on the occasion of his seventieth birthday

BY
Morgan Ward

I. Introduction and summary of results

1. Let P and $Q \neq 0$ be fixed elements of R_{p}, the p-adic completion of the rational field R, and consider a second order linear recurrence

$$
(W): \quad W_{0}, \quad W_{1}, \cdots, \quad W_{n}, \cdots
$$

defined by

$$
\begin{equation*}
W_{n+2}=P W_{n+1}-Q W_{n} \quad(n=0,1,2, \cdots) \tag{1.1}
\end{equation*}
$$

whose initial values W_{0}, W_{1} are elements of R_{p}. If P, Q, W_{0}, W_{1} are p-adic integers, all the W_{n} are p-adic integers, and we say that (W) is integral.

Any element $X \neq 0$ of the field R_{p} may be written as $X=p^{x} U$, where U is a unit of R_{p}. We call x the (p-adic) value of X, writing $x=\phi(X)$, with the usual convention that if $X=0, x=+\infty$. In particular, we write

$$
\begin{equation*}
w_{n}=\phi\left(W_{n}\right) \quad(n=0,1,2, \cdots) \tag{1.2}
\end{equation*}
$$

The sequence (w) is called the value function of the recurrence (W).
We solve completely here the problem of determining the value function of any such recurrence (W); indeed we shall give specific formulas for (w). Since R_{p} contains the rational field R, our results give a far-reaching generalization of Lucas's "Laws of apparition and repetition" for the appearance of multiples of p in the special recurrences (Lucas [4]):

$$
\begin{array}{lllll}
(L): & L_{0}=0, & L_{1}=1, & \cdots, & L_{n}, \\
(S): & S_{0}=2, & S_{1}=P, & \cdots, & S_{n}, \\
\cdots
\end{array}
$$

It should be possible to carry out a similar generalization for the functions (L) and (S) discussed by Lehmer in his thesis (Lehmer [3]), where P is replaced by the square root of an integer of R, but this will not be done here.
2. Let

$$
\begin{equation*}
f(z)=z^{2}-P z+Q \tag{2.1}
\end{equation*}
$$

be the polynomial associated with the recurrence (1.1), and let D denote its discriminant. If p divides D, we call p a discriminantal divisor of $f(z)$ or of (W).

It turns out that the only case presenting any difficulty occurs when P

