The derived series of a finite p-group¹

BY

CHARLES R. HOBBY

The Galois groups of a class field tower form a chain of finite groups G_1, G_2, \cdots , such that G_1 is abelian and $G_n \cong G_{n+1}/G_{n+1}^{(n)}$, where $G_{n+1}^{(n)}$ denotes the n^{th} derived group of G_{n+1} . The class field tower and the chain of groups terminate after n steps if $G_{n+1}^{(n)} = \langle 1 \rangle$. We shall consider the case where all G_n are p-groups. It is known [5] that the chain terminates if G_1 is cyclic, or if p = 2 and G_1 has type (2, 2). Olga Taussky (see Magnus [4]) posed the problem of determining whether such a chain of p-groups must always terminate. N. Itô [3] gave a negative answer to this question by constructing an infinite chain of p-groups satisfying the above conditions with G_1 of type (p, p, p) and $p \neq 2$. The question of the existence or nonexistence of infinite chains with G_1 generated by two elements or with p = 2 remained open.

The main result of this paper is the following theorem.

THEOREM 1. Suppose $p \neq 2$, and let G be a noncyclic abelian p-group. Then there exists an infinite chain of p-groups G_1, G_2, \dots , such that

 $G_1 \cong G, \quad G_n \cong G_{n+1}/G_{n+1}^{(n)}, \quad and \quad G_{n+1}^{(n)} \neq \langle 1 \rangle.$

A weaker result is obtained if p = 2.

THEOREM 2. Suppose G is an abelian 2-group which contains a subgroup having one of the types $(2^2, 2^3)$, $(2^2, 2^2, 2^2)$, $(2^2, 2^2, 2, 2)$, or (2, 2, 2, 2, 2). Then there exists an infinite chain of 2-groups G_1, G_2, \cdots , such that $G_1 \cong G$, $G_n \cong G_{n+1}/G_{n+1}^{(n)}$, and $G_{n+1}^{(n)} \neq \langle 1 \rangle$.

As we noted above, the chain G_1 , G_2 , \cdots terminates if G_1 is cyclic, or if p = 2 and G_1 has type (2, 2). The remaining cases not covered by Theorem 2 are undecided. The proof of Theorem 2 is similar to that of Theorem 1 and will not be given here. Full details can be found in the author's thesis [2].

A second question posed by Olga Taussky [6] can be stated as follows. Can a bound on the derived length of a *p*-group *H* be determined from the type of $H/H^{(1)}$? Such a bound exists if $H/H^{(1)}$ is cyclic or of type (2, 2). W. Magnus [4] showed that there is no bound if $H/H^{(1)}$ has type (3, 3, 3). A complete answer to this question for $p \neq 2$, and a partial answer for p = 2, is given by the next theorem.

THEOREM 3. Suppose H is a p-group and $G = H/H^{(1)}$. The derived length

Received June 11, 1960.

¹ This paper contains part of a doctoral thesis written at the California Institute of Technology. The author is indebted to Dr. Olga Taussky Todd for directing this research, Professor Hans Zassenhaus for many helpful suggestions, and the National Science Foundation for financial support.