COMPLETIONS OF GROUPS OF CLASS $\mathbf{2}^{1}$

BY
Paul Conrad

1. Introduction

Let G be a group with center Z and commutator subgroup C, and suppose that $G \supseteq Z \supseteq C$. If H is a complete ($n H=H$ for all $n>0$) nilpotent group of class 2 that contains G and no proper complete subgroup of H contains G, then we say that H is a completion of G. We prove (Theorem 3.2) that there exists a completion of G if and only if $\{g \in G: n g \in C$ for some $n>0\} \subseteq Z$. If C is torsion free, then there exists a completion of K of G such that the commutator subgroup of K is torsion free and the center of K is the abelian completion of Z. Moreover, any other such completion of G is isomorphic to K (Theorem 3.3). These results generalize the corresponding results of Baer for abelian groups, and also Vinogradov's result for torsion free G.

The author originally had a long transfinite proof of Theorem 2.1, and all other results were restricted by the hypothesis that G contains no elements of order 2. This hypothesis on G has been removed, and the author wishes to thank Reinhold Baer for suggesting the elegant proof of Theorem 2.1.

Notation. $\quad N$ and Δ will always denote additive abelian groups with elements $0, a, b, \cdots$ and $\theta, \alpha, \beta, \gamma, \cdots$ respectively. F will denote the group of all factor mappings of $\Delta \times \Delta$ into N. Thus $f \in F$ if and only if $f: \Delta \times \Delta \rightarrow N$ and for all $\alpha, \beta \in \Delta$

$$
f(\alpha, \theta)=f(\theta, \beta)=0
$$

and

$$
f(\alpha, \beta+\gamma)+f(\beta, \gamma)=f(\alpha+\beta, \gamma)+f(\alpha, \beta)
$$

Each $f \in F$ determines a central extension G of N by Δ, where $G=\Delta \times N$ and, for all (α, a) and (β, b) in G,

$$
(\alpha, a)+(\beta, b)=(\alpha+\beta, f(\alpha, \beta)+a+b)
$$

The mappings of $f, g \in F$ are equivalent if there exists $t: \Delta \rightarrow N$ such that for all $\alpha, \beta \in \Delta$,

$$
f(\alpha, \beta)=g(\alpha, \beta)-t(\alpha+\beta)+t(\alpha)+t(\beta)
$$

In this case the mapping $(\alpha, a) \in G(\Delta, N, f)$ upon $(\alpha, a+t(\alpha))$ in $G(\Delta, N, g)$ is an isomorphism.
G will always denote an additive group with commutator group C and center Z, and we shall always assume that $G \supseteq Z \supseteq C$. Suppose that N is a subgroup of G between Z and C. Let $\Delta=G / N$, and let π be the natural homo-
${ }^{1}$ This work was supported by a grant from the National Science Foundation.

