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In the latter half of [5] Doob extends to Markoff chains many results he
had previously obtained for Brownian motions. Roughly, his argument
rests on the theory of martingales and on properties of the Martin boundary
established by R. S. Martin and M. Brelot using classical methods, the bridge
between the two groundworks being the equivalence of resolutivity of the
boundary and almost certain convergence of an appropriate Markoff chain.

This paper presents another argument, using only the basic properties
of martingales and Markoff chains, in which the main convergence theorem
of Doob is proved at the beginning by reversing the sense of time in a Markoff
chain. I first intended to write a note giving the simple proof of this con-
vergence by explicit calculation; the subject is so attractive, however, that
I decided upon a brief complete exposition, including some material omitted
from 17 of [7] about which I shall say a word.

In view of the symmetry of past and future in the notion of Markoff chain,
the lack of such symmetry in defining Markoff chains with stationary transi-
tions must puzzle many a probabilist. Now, a slight and momentarily ugly
alteration of the latter definition yields the notion of random chain with
approximately stationary transitions, a notion symmetric in past and future
This symmetry is used in 2 to establish the convergence mentioned above
and in 5 to reduce problems concerning the entrance boundary to ones con-
cerning the exit boundary. The chains themselves are studied in i and in the
first part of 5 in order to furnish the proper background for [5] and [7].
Doob’s convergence theorem, established directly, leads to the proofs in

3 and 4 of the Poisson-Martin representation of excessive functions, the
behavior of excessive functions near the Martin boundary, and the resolutivity
of the Martin boundary. Of course, it is only the arrangement of material
that distinguishes these sections.
Some remarks are deferred until 6, the last section, since most of them

merely explain the departures from the language and definitions of Doob
and Brelot.

Doob’s argument and ours both hold for Brownian motions or, more gen-
erally, for the processes discussed in the third part of [7].

1. Random chains

The space of states is a countable set R which is provided with the discrete
topology as a topological space and with the field of all its subsets as a meas-
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