BOOLEAN RINGS AND BANACH LATTICES ${ }^{1}$

BY
B. J. Eisenstadt and G. G. Lorentz

1. Introduction

Let X be a Banach lattice of measurable functions. If $\chi_{e} \epsilon X$ is the characteristic function of a set $e, \Phi(e)=\left\|\chi_{e}\right\|$ is a function defined on a certain Boolean ring of sets. In this paper we consider the following problem. If a function $\Phi(e)$ is given on a Boolean ring B, what are the conditions under which B can be imbedded into a vector lattice X and Φ extended into a norm on X ? Under what conditions on Φ is it possible to postulate some additional properties of X ? Answers to such questions are given in Sections 2, 3, 5. This leads in Section 6 to a natural generalization of certain spaces introduced by one of the authors [4] under the name of spaces Λ. We consider abstract Boolean rings B and correspondingly functions in the sense of Carathéodory [3]. The reader may substitute for this, if he so wishes, Boolean rings of sets and point-functions. This substitution would not lead to any simplification of the proofs.

2. Extension of a multiply subadditive function into a norm

Let B be a Boolean ring, i.e., a distributive, relatively complemented lattice with zero element (a Boolean ring is a Boolean algebra if and only if it contains a unit). Let $\Phi(e)$ be a real valued function defined on B. We will discuss extensions of B into a vector lattice S such that unions of disjoint elements of B become sums, intersections become products, and the order is preserved, and at the same time extensions of Φ into a seminorm on S.

The smallest extension of B of this kind is the vector lattice S of step-functions. The elements of S are formal sums $x=\sum_{k=1}^{n} a_{k} e_{k}$ (where e_{k} is also the characteristic function of the set e_{k}) with an obvious identification rule (see [5], [3]).

A seminorm $P(x)$ on a vector space satisfies the following relations:

$$
\begin{aligned}
& \text { (a) } P(x) \geqq 0, \quad \text { (b) } \quad P(a x)=|a| P(x), \\
& \\
& \text { (c) } P\left(x_{1}+x_{2}\right) \leqq P\left(x_{1}\right)+P\left(x_{2}\right)
\end{aligned}
$$

Other natural conditions for $P(x)$ are

$$
\text { (d) } P(x) \leqq P(y) \quad \text { for } 0 \leqq x \leqq y, \quad \text { (e) } \quad P(|x|)=P(x)
$$

Theorem 1. (α). A real valued function Φ on B has an extension P onto S which is a seminorm (we call such Φ norm-generating) if and only if Φ satisfies

$$
\begin{equation*}
\Phi(e) \leqq \sum_{k=1}^{n}\left|a_{k}\right| \Phi\left(e_{k}\right) \quad \text { for } e=\sum a_{k} e_{k}, \quad e, e_{k} \in B \tag{i}
\end{equation*}
$$

Received June 7, 1958.
${ }^{1}$ Presented to the American Mathematical Society, August 23, 1956. This work was supported in part by the National Science Foundation.

