SOLUTION OF CERTAIN NONAUTONOMOUS DIFFERENTIAL SYSTEMS BY SERIES OF EXPONENTIAL FUNCTIONS

BY
Michael Golomb

1. Introduction

In a recent paper [1] Wasow investigated systems of differential equations of the form

$$
\begin{equation*}
y^{\prime}=f(y)+\sum g_{k} e^{i \omega_{k} x} \tag{1.1}
\end{equation*}
$$

Here y is an n-dimensional vector; y^{\prime} denotes the derivative of y with respect to x; the g_{k} are constant vectors; the ω_{k} are real, not necessarily rationally independent numbers; the components of the vector $f(y)$ are assumed to be analytic functions of the components of y vanishing for $y=a$ and holomorphic in the neighborhood of a. The sum in (1.1) has $m<\infty$ terms.

Wasow constructs a solution of (1.1) of the form

$$
\begin{equation*}
y=a+\sum a_{r} e^{i \mu_{r} x} \tag{1.2}
\end{equation*}
$$

where the series converges uniformly and absolutely for $-\infty<x<\infty$ provided the coefficients g_{k} of (1.1) are sufficiently small. The numbers μ_{r} are linear combinations of the $\omega_{1}, \omega_{2}, \cdots, \omega_{m}$ with nonnegative integral coefficients, and the a_{r} are determined recursively by solving $n^{\text {th }}$ order linear systems of equations. The individual terms of series (1.2) represent the theoretically and experimentally well-known combination harmonics in the response of system (1.1).

In this paper Wasow's results will be extended in several directions. The exponential polynomial of (1.1) will be replaced by a general exponential series

$$
\begin{equation*}
\sum_{k=1}^{\infty} g_{k} e^{i \omega_{k} x} \tag{1.3}
\end{equation*}
$$

which includes the general almost periodic function and the general periodic function with absolutely convergent Fourier series. It will be shown that (1.2) is a real solution provided (1.1) is a real system. The general system

$$
\begin{equation*}
y^{\prime}=g(x, y) \tag{1.4}
\end{equation*}
$$

will be shown to have a solution of form (1.2) if the components of $g(x, y)$ are analytic functions of y, holomorphic for $\|y-a\| \leqq \rho$, with coefficients that are of the form (1.3).

In the next section it will be proved that if the linear homogeneous part of (1.1) has a solution of the form

$$
\begin{equation*}
a_{0} e^{i\left(\mu_{0} / q\right) x} \tag{1.5}
\end{equation*}
$$

Received October 18, 1957.

