A VARIATIONAL METHOD FOR TRIGONOMETRIC POLYNOMIALS¹

R. P. Boas, Jr.

1. Introduction

Let f(x) be a trigonometric polynomial. We consider a linear functional \mathcal{L} defined by

$$\mathcal{L}(f) = \sum_{\nu=1}^{m} \sum_{j=0}^{n_{\nu}} \alpha_{\nu}^{(j)} f^{(j)}(x_{\nu}),$$

where x_{ν} , α_{ν} are given real numbers, $0 \leq x_{\nu} < 2\pi$, with the x_{ν} all different. We suppose that $\alpha_{\nu}^{(n_{\nu})} \neq 0$ and that $n_{\nu} > 0$ for at least one ν . We call

$$l = n_1 + \cdots + n_m + m$$

the order of \mathfrak{L} ; thus f'(a) - f'(-a) is a functional of order 4. We are interested in the maximum of $|\mathfrak{L}(f)|$ when f runs through the class of trigonometric polynomials of type n which satisfy $|f(x)| \leq 1$ for real x. (It is convenient to say that a trigonometric polynomial is of type n if it is of degree at most n; a trigonometric polynomial of type n is an entire function of exponential type n.) In looking for this maximum it is enough to consider the subclass \mathfrak{I}_n whose members are in addition real for real x. For, if θ is real, we have $e^{i\theta}f(z) = f_1(z) + f_2(z)$, where f_1 and f_2 are elements of \mathfrak{I}_n . Since $\mathfrak{L}(e^{i\theta}f) = e^{i\theta}\mathfrak{L}(f)$, we can choose θ so that $\mathfrak{L}(e^{i\theta}f) = |\mathfrak{L}(f)|$, and so $\mathfrak{L}(f_1) = |\mathfrak{L}(f)|$. Hence the maximum of $|\mathfrak{L}(f)|$ is attained, if at all, for an f in \mathfrak{I}_n , and indeed for one for which $\mathfrak{L}(f) > 0$.

When $\mathfrak{L}(f) = f'(a)$, we have S. Bernstein's theorem that $|f'(a)| \leq n$ when $|f'(x)| \leq 1$ for all x. Here the bound for $|\mathfrak{L}(f)|$ is the same no matter which point a is selected; this is no longer true in the general case.

Bernstein's theorem on trigonometric polynomials is a special case of his theorem on entire functions of exponential type: if f(z) is an entire function of exponential type τ (which we may suppose is real for real x), and $|f(x)| \leq 1$ for all real x, then $|f'(x)| \leq \tau$ for all real x. This does not happen for more general functionals \mathfrak{L} . In fact, Schaeffer and I [1] found that the maximum of $|\mathfrak{L}(f)|$ in this class \mathfrak{T}_{τ} of entire functions is not, in general, attained for a trigonometric polynomial f. However, methods similar to those used in [1] still work for the class \mathfrak{I}_n . The general result is stated in §3 below; in §4 it is applied to the special functional $\lambda n^2 f(0) + f''(0)$. As corollaries, we obtain two theorems for ordinary polynomials. Further applications will be given elsewhere.

The problem of maximizing the functional f'(a) - f'(-a) is equivalent to the problem of maximizing $p'_n(x)$ for a given x on (-1, 1) when the poly-

Received October 11, 1957; received in revised form December 3, 1957.

¹ Research supported by the National Science Foundation.