A VARIATIONAL METHOD FOR TRIGONOMETRIC POLYNOMIALS ${ }^{1}$

BY
R. P. Boas, JR.

1. Introduction

Let $f(x)$ be a trigonometric polynomial. We consider a linear functional \mathfrak{L} defined by

$$
\mathscr{L}(f)=\sum_{\nu=1}^{m} \sum_{j=0}^{n_{\nu}} \alpha_{\nu}^{(j)} f^{(j)}\left(x_{\nu}\right)
$$

where x_{ν}, α_{ν} are given real numbers, $0 \leqq x_{\nu}<2 \pi$, with the x_{ν} all different. We suppose that $\alpha_{\nu}^{\left(n_{\nu}\right)} \neq 0$ and that $n_{\nu}>0$ for at least one ν. We call

$$
l=n_{1}+\cdots+n_{m}+m
$$

the order of \mathfrak{L}; thus $f^{\prime}(a)-f^{\prime}(-a)$ is a functional of order 4. We are interested in the maximum of $|\mathfrak{L}(f)|$ when f runs through the class of trigonometric polynomials of type n which satisfy $|f(x)| \leqq 1$ for real x. (It is convenient to say that a trigonometric polynomial is of type n if it is of degree at most n; a trigonometric polynomial of type n is an entire function of exponential type n.) In looking for this maximum it is enough to consider the subclass J_{n} whose members are in addition real for real x. For, if θ is real, we have $e^{i \theta} f(z)=f_{1}(z)+f_{2}(z)$, where f_{1} and f_{2} are elements of J_{n}. Since $\mathscr{L}\left(e^{i \theta} f\right)=e^{i \theta} \mathscr{L}(f)$, we can choose θ so that $\mathscr{L}\left(e^{i \theta} f\right)=|\mathscr{L}(f)|$, and so $\mathfrak{L}\left(f_{1}\right)=|\mathscr{L}(f)|$. Hence the maximum of $|\mathfrak{L}(f)|$ is attained, if at all, for an f in \mathfrak{J}_{n}, and indeed for one for which $\mathcal{L}(f)>0$.

When $\mathscr{L}(f)=f^{\prime}(a)$, we have S. Bernstein's theorem that $\left|f^{\prime}(a)\right| \leqq n$ when $\left|f^{\prime}(x)\right| \leqq 1$ for all x. Here the bound for $|\mathscr{L}(f)|$ is the same no matter which point a is selected; this is no longer true in the general case.

Bernstein's theorem on trigonometric polynomials is a special case of his theorem on entire functions of exponential type: if $f(z)$ is an entire function of exponential type τ (which we may suppose is real for real x), and $|f(x)| \leqq 1$ for all real x, then $\left|f^{\prime}(x)\right| \leqq \tau$ for all real x. This does not happen for more general functionals \mathfrak{L}. In fact, Schaeffer and I [1] found that the maximum of $|\mathscr{L}(f)|$ in this class \mathscr{F}_{τ} of entire functions is not, in general, attained for a trigonometric polynomial f. However, methods similar to those used in [1] still work for the class J_{n}. The general result is stated in §3 below; in $\S 4$ it is applied to the special functional $\lambda n^{2} f(0)+f^{\prime \prime}(0)$. As corollaries, we obtain two theorems for ordinary polynomials. Further applications will be given elsewhere.

The problem of maximizing the functional $f^{\prime}(a)-f^{\prime}(-a)$ is equivalent to the problem of maximizing $p_{n}^{\prime}(x)$ for a given x on $(-1,1)$ when the poly-

[^0]
[^0]: Received October 11, 1957 ; received in revised form December 3, 1957.
 ${ }^{1}$ Research supported by the National Science Foundation.

