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1. Introduction

A function f will be said to be in the local domain of the linear operator l at
the point s, (in symbols: f e D(I, s)), if f and If are defined and continuous in
some neighborhood of s. Similarly, the domain D(I, I) of for the interval
I consists of all f such that f and f are continuous in I.
The differential operator

d(1.1) I aD28 + bD8 + c, a > O, D8 d
enjoys the following obvious properties"

(1) Local character: If f(s) 0 for all s in a neighborhood of the point So,
then f e D(I, So) and tf(So) O.

(2) I is nontrivial: To each point s of the interval of definition there exists
an f e D(, s) such that f(a) 0 and f(s) O.

(3) Weak minimum property: Let f e D(I, s) be nonnegative in a neigh-
borhood of s and f(s) O. Then f(s) >= O.

In other words, if the point s is both a zero and a local minimum for f, then
f(s) >= O. For the pure differential operator I aD28 bD (where a > 0)
the property (3) may be sharpened to

(3’) Strong minimum property: If f D(I, s) has a local minimum at s,
then If(s) >- O.

Various problems have led the author to derive the general form of linear
operators in one dimension having these properties [1]. The class of such
operators forms a natural generalization of the classical second order dif-
ferential operators. It has been shown elsewhere, [1], [2], [3], that their use
has considerable advantages. The use of the new canonical form renders the
theory more satisfactory and at the same time simpler; it achieves an un-
expected unification and is more adapted for many applied problems.
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