ON SUBDETERMINANTS OF DOUBLY STOCHASTIC MATRICES ${ }^{1}$

by Marvin Marcus

In this note we obtain an inequality for the euclidean norm of an n-square complex matrix $A=\left(A_{i j}\right)$, (Theorem 1). This is used to give lower bounds for the rank of A and in particular for the rank of a doubly stochastic matrix. We then distinguish (Theorems 2 and 3) a certain simple set of matrices among all doubly stochastic matrices in terms of possible values for the subdeterminants. In particular a characterization of the permutation matrices as a subclass of doubly stochastic matrices is given in terms of bounds on the subdeterminants.

We proceed to describe some notation to be used throughout. A typical r-square subdeterminant of A will be denoted by $d_{r}(A)$, $\operatorname{det} A$ will be the determinant of A. The sum over all $\binom{n}{r}^{2}$ choices of some function φ of the d_{r} will be denoted by

$$
\sum \varphi\left(d_{r}(A)\right),
$$

and the norm of A is given by

$$
\|A\|^{2}=\sum\left|d_{1}(A)\right|^{2}=\sum_{i, j}\left|A_{i j}\right|^{2}
$$

The $i^{\text {th }}$ row vector of A is $A_{(i)}$, and the $j^{\text {th }}$ column vector is $A^{(j)}$. The rank of A is $\rho(A) ; I_{k}$ is the k-square identity matrix; 0_{k} is the k-square matrix of zeros; $A+B$ is the direct sum of A and B; and the conjugate transpose of A is A^{*}. A doubly stochastic (d.s.) matrix A is one which satisfies

$$
\begin{aligned}
\sum_{j=1}^{n} A_{i j} & =1, & i & =1, \cdots, n \\
\sum_{i=1}^{n} A_{i j} & =1, & j & =1, \cdots, n \\
A_{i j} & \geqq 0, & i, j & =1, \cdots, n
\end{aligned}
$$

The $r^{\text {th }}$ symmetric function of the letters a_{1}, \cdots, a_{k} is $E_{r}\left(a_{1}, \cdots, a_{k}\right)$.
In [4] H. Richter proved for an arbitrary n-square complex matrix A that ${ }^{2}$

$$
\begin{equation*}
\left\|(\operatorname{det} A) A^{-1}\right\|^{2} \leqq n^{-(n-2)}\|A\|^{2(n-1)} \tag{1}
\end{equation*}
$$

with equality if and only if $A A^{*}$ is a scalar matrix.
The first result is an extension of (1).

[^0]
[^0]: Received December 26, 1956.
 ${ }^{1}$ This work was completed under an N.R.C.-N.B.S. Postdoctoral Research Associateship at the National Bureau of Standards, Washington, D. C.
 ${ }^{2}$ The same result with a simpler proof appeared recently in a note of L. Mirsky (Arch. Math., vol. 7 (1956), p. 276).

