LIFTING CUSP FORMS ON GL_{2n} TO Sp_{2n} : THE UNRAMIFIED CORRESPONDENCE

DAVID GINZBURG, STEPHEN RALLIS, AND DAVID SOUDRY

0. Introduction. Let τ be an irreducible, automorphic, cuspidal, self-dual representation of $\operatorname{GL}_{2n}(\mathbb{A})$, where \mathbb{A} is the adele ring of a number field F. Assume that the partial exterior square L-function $L^S(\tau, \Lambda^2, s)$ has a pole at s = 1 and that the standard L-function $L(\tau, (1/2)) \neq 0$. In [GRS1] we constructed a space $\pi_{\psi}(\tau)$ of cusp forms on the metaplectic cover $\widetilde{\operatorname{Sp}}_{2n}(\mathbb{A})$. This space is invariant to right translations by $\widetilde{\operatorname{Sp}}_{2n}(\mathbb{A})$. It depends on a choice of a nontrivial character ψ of $F \setminus \mathbb{A}$. We proved in [GRS2, Chapter 5] that $\pi_{\psi}(\tau)$ is nontrivial. $\pi_{\psi}(\tau)$ affords a cuspidal representation of $\widetilde{\operatorname{Sp}}_{2n}(\mathbb{A})$, which we continue to denote by $\pi_{\psi}(\tau)$. We do not know yet how to prove that $\pi_{\psi}(\tau)$ is irreducible. Each irreducible summand π of $\pi_{\psi}(\tau)$ has a nontrivial ψ -Whittaker coefficient in the sense that

$$\int_{V_n(F)\setminus V_n(\mathbb{A})} \varphi(vg)\psi_n(v)\,dv \neq 0 \tag{0.1}$$

as φ varies in (the space of) π . Here V_n denotes the standard maximal unipotent subgroup of Sp_{2n}, and ψ_n is the standard nondegenerate character of $V_n(\mathbb{A})$ which corresponds to ψ . By [GRS1, Section 2.3, Remark 1], $\pi_{\psi}(\tau)$ contains the direct sum of all ψ^{-1} -generic (i.e., satisfying (0.1)) cuspidal representations π of $\widetilde{Sp}_{2n}(\mathbb{A})$, such that $L_{\psi}^S(\pi \otimes \tau, s)$ has a pole at s = 1. See [GRS3] for the definition of the standard *L*-function for generic representations of $\widetilde{Sp}_{2n} \times GL_k$ associated to ψ . The existence of the above pole indicates that τ is the " ψ -functorial lift of π ," in the sense that for almost all places ν , where π_{ν} and τ_{ν} are unramified, we have

$$L_{\psi_{\nu}}(\pi_{\nu}, s) = L(\tau_{\nu}, s). \tag{0.2}$$

This is the main result of this paper. More precisely, here is the main theorem.

MAIN THEOREM. The representation $\pi_{\psi}(\tau)$ is the direct sum of all irreducible, cuspidal, ψ^{-1} -generic representations π of $\widetilde{Sp}_{2n}(\mathbb{A})$ that satisfy (0.2) at almost all places.

We conjecture that $\pi_{\psi}(\tau)$ is irreducible. See [GRS1, Section 2.3]. Recall that the cusp forms of $\pi_{\psi}(\tau)$ are linear combinations of certain Fourier-Jacobi coefficients of

Received 1 October 1998.

¹⁹⁹¹ Mathematics Subject Classification. Primary 11F70; Secondary 11F67.

Ginzburg and Soudry's research supported by the Israel Science Foundation, founded by the Israel Academy of Sciences and Humanities.