THE DISTRIBUTION OF SPACINGS BETWEEN QUADRATIC RESIDUES

PÄR KURLBERG AND ZEÉV RUDNICK

1. Introduction. Our goal in this paper is to study the distribution of spacings (or gaps) between squares in $\mathbb{Z}/q\mathbb{Z}$, as $q \to \infty$. In the case that q is prime, a theorem of Davenport (see [3], [4], [11], and [18]) shows that the probability of two consecutive quadratic residues modulo a prime q being spaced h units apart is 2^{-h} , as $q \to \infty$. For our purposes, we may interpret this result as saying that when we normalize the spacings to have unit mean, then the distribution of spacing as $q \to \infty$ along primes is given by

$$P(s) = \sum_{h=1}^{\infty} 2^{-h} \delta\left(s - \frac{h}{2}\right),$$

that is, a sum of point masses at half-integers with exponentially decreasing weights.

In this paper, we study the spacing distribution of squares modulo q when q is square-free and *highly composite*, that is, the limiting distribution of spacings between the squares modulo q as the number of prime divisors, $\omega(q)$, tends to infinity. For odd square-free q, the number N_q of squares modulo q equals

$$N_q = \prod_{p|q} \frac{p+1}{2}.$$

This is because, if p is an odd prime, the number of squares modulo p is (p+1)/2 and, for q square-free, x is a square modulo q if and only if x is a square modulo p for all primes p dividing q. Thus, for odd q, the mean spacing $s_q = q/N$ equals

$$s_q = \frac{2^{\omega(q)}}{\prod_{p|q} (1+1/p)} = \frac{2^{\omega(q)}}{\sigma_{-1}(q)}.$$

For q = 2q' even and square-free, it is easily seen that $s_q = s_{q'}$. It follows that $s_q \to \infty$ as $\omega(q) \to \infty$, unlike the case of prime q, where the mean spacing is essentially constant. Thus, unlike in the prime case (where the level spacing distribution was forced to be supported on a lattice), in the highly composite case, there is an a priori chance of getting a continuous distribution.

Received 3 August 1998.

1991 Mathematics Subject Classification. Primary 11.

Authors' work supported in part by Israel Science Foundation grant number 192/96. Kurlberg also partially supported by the European Community Training and Mobility of Researchers network "Algebraic Lie Representations," EC-contract number ERB FMRX-CT97-0100.