HÖLDER REGULARITY AND DIMENSION BOUNDS FOR RANDOM CURVES

M. AIZENMAN AND A. BURCHARD

To the memory of Roland L. Dobrushin

CONTENTS

1. Introduction	419
1.1. General framework	419
1.2. Main results	421
2. Analysis of curves through tortuosity	427
2.1. The space of curves	427
2.2. Measures of curve roughness	428
2.3. Tortuosity and Hölder continuity	429
2.4. Tortuosity and box dimension	
3. Regularity for curves in random systems	432
3.1. Proof of the main regularity result	432
3.2. Tortuosity of random systems and the backbone dimension	434
4. Compactness, tightness, and scaling limits	436
5. Lower bounds for the Hausdorff dimension of curves	438
5.1. Straight runs	438
5.2. Construction of fractal subsets	439
5.3. Energy estimates	441
6. Lower bounds on curve dimensions in random systems	445
Appendix: Models with random curves	
References	

1. Introduction

1.1. General framework. We consider here curves in \mathbb{R}^d that are shaped on many scales in a manner found in various critical models (see Figure 1). The framework for the discussion is random systems, where the random object is expressed as a closed collection of polygonal curves of a small step size δ . Our main results are general

Received 18 February 1998. Revision received 17 September 1998.

1991 Mathematics Subject Classification. Primary 60D05; Secondary 28A75, 60K35, 82B43.

Aizenman's work partially supported by National Science Foundation grant number PHY-9512729 and, while at the Institute for Advanced Study, by a grant from the NEC Research Institute.