CONSTANT SCALAR CURVATURE METRICS WITH ISOLATED SINGULARITIES

RAFE MAZZEO AND FRANK PACARD

1. Introduction and statement of the results. In this paper, we construct solutions of the Yamabe problem on the sphere (S^N, g_0) with its standard metric, that are singular at a specified closed set $\Lambda \subset S^N$. More specifically, we seek a new metric *g* that is conformal to g_0 , is complete on $\Lambda \subset S^N$, and has constant positive scalar curvature *R*. The problem may be translated into a differential equation as follows. Since *g* is conformal to g_0 , we may write $g = u^{4/(N-2)}g_0$ where *u* is a positive function on $M \setminus \Lambda$. The scalar curvature functions $R(g_0)$ of g_0 and R(g) of *g* are related by the equation

$$\Delta_{g_0} u - \frac{N-2}{4(N-1)} R(g_0) u + \frac{N-2}{4(N-1)} R(g) u^{(N+2)/(N-2)} = 0.$$
(1)

In order that g be complete on $S^N \setminus \Lambda$, it is necessary for u to tend to infinity rather strongly on approach to Λ , and of course we wish to solve this equation with R a (prescribed) constant.

The first two terms of the operator on the left in (1), namely,

$$\mathscr{L}_{g_0} \equiv \Delta_{g_0} - \frac{N-2}{4(N-1)} R(g_0), \tag{2}$$

give a second-order, linear, elliptic differential operator, known as the conformal Laplacian of the metric g_0 . It satisfies the conformal equivariance property that if two metrics are conformally related, such as g and g_0 , then for any function ϕ ,

$$\mathscr{L}_{g_0}(u\phi) = u^{(N+2)/(N-2)} \mathscr{L}_g(\phi).$$
(3)

Notice that (1) corresponds to the special case of (3) when $\phi = 1$.

This "singular Yamabe problem" has been extensively studied in recent years, as has the case when the ambient manifold is more general than the sphere; many existence results, as well as obstructions to existence, are known. Briefly, for a solution to exist on a general compact Riemannian manifold (M, g_0) , the size of Λ and the sign of R must be related to one another. If a solution exists with R < 0, then dim $(\Lambda) > (N-2)/2$, while if a solution exists with $R \ge 0$, then dim $(\Lambda) \le (N-2)/2$, and in

Received 22 September 1998.

¹⁹⁹¹ Mathematics Subject Classification. Primary 53C25; Secondary 58G30.

Mazzeo's work supported by a National Science Foundation Young Investigator Fellowship and National Science Foundation grant number DMS 9303236.