DISCRIMINANT COMPLEMENTS AND KERNELS OF MONODROMY REPRESENTATIONS

JAMES A. CARLSON and DOMINGO TOLEDO

1. Introduction. A hypersurface of degree d in a complex projective space \mathbb{P}^{n+1} is defined by an equation of the form

$$
\begin{equation*}
F(x)=\sum a_{L} x^{L}=0, \tag{1.1}
\end{equation*}
$$

where $x^{L}=x_{0}^{L_{0}} \cdots x_{n+1}^{L_{n+1}}$ is a monomial of degree d and where the a_{L} are arbitrary complex numbers, not all zero. Viewed as an equation in both the a 's and the x 's, (1.1) defines a hypersurface \mathbf{X} in $\mathbb{P}^{N} \times \mathbb{P}^{n+1}$, where $N+1$ is the dimension of the space of homogeneous polynomials of degree d in $n+2$ variables, and where the projection p onto the first factor makes \mathbf{X} into a family with fibers $X_{a}=p^{-1}(a)$. This is the universal family of hypersurfaces of degree d and dimension n. Let Δ be the set of points a in \mathbb{P}^{N} such that the corresponding fiber is singular. This is the discriminant locus; it is well known to be irreducible and of codimension 1 . Our aim is to study the fundamental group of its complement, which we write as

$$
\Phi=\pi_{1}\left(\mathbb{P}^{N}-\Delta\right) .
$$

When we need to make precise statements, we sometimes write $\Phi_{d, n}=\pi_{1}\left(U_{d, n}, o\right)$, where d and n are as above, $U_{d, n}=\mathbb{P}^{N}-\Delta$, and o is a base point.

The groups Φ are almost always nontrivial and, in fact, are almost always large; that is, there is a homomorphism of Φ to a noncompact semisimple real algebraic group which has Zariski-dense image. Large groups are infinite and, moreover, always contain a free group of rank 2. This follows from the Tits alternative [35], which states that in characteristic zero a linear group either has a solvable subgroup of finite index or contains a free group of rank 2 .

To show that $\Phi=\Phi_{d, n}$ is large, we consider the image $\Gamma=\Gamma_{d, n}$ of the monodromy representation

$$
\begin{equation*}
\rho: \Phi \longrightarrow G . \tag{1.2}
\end{equation*}
$$

Here and throughout this paper, $G=G_{d, n}$ denotes the group of automorphisms of the primitive cohomology $H^{n}\left(X_{o}, \mathbb{R}\right)_{o}$ that preserve the cup product. When n is odd, the primitive cohomology is the same as the cohomology; when n is even, it is the

[^0]
[^0]: Received 11 February 1997. Revision received 24 February 1998.
 1991 Mathematics Subject Classification. Primary 14D05, 14D07, 14E20; Secondary 14C30, 14F35.
 Authors partially supported by National Science Foundation grant number DMS-9625463.

