DISCRIMINANT COMPLEMENTS AND KERNELS OF MONODROMY REPRESENTATIONS

JAMES A. CARLSON AND DOMINGO TOLEDO

1. Introduction. A hypersurface of degree d in a complex projective space \mathbb{P}^{n+1} is defined by an equation of the form

$$F(x) = \sum a_L x^L = 0, \tag{1.1}$$

where $x^L = x_0^{L_0} \cdots x_{n+1}^{L_{n+1}}$ is a monomial of degree d and where the a_L are arbitrary complex numbers, not all zero. Viewed as an equation in both the a's and the x's, (1.1) defines a hypersurface \mathbf{X} in $\mathbb{P}^N \times \mathbb{P}^{n+1}$, where N+1 is the dimension of the space of homogeneous polynomials of degree d in n+2 variables, and where the projection p onto the first factor makes \mathbf{X} into a family with fibers $X_a = p^{-1}(a)$. This is the universal family of hypersurfaces of degree d and dimension n. Let Δ be the set of points a in \mathbb{P}^N such that the corresponding fiber is singular. This is the discriminant locus; it is well known to be irreducible and of codimension 1. Our aim is to study the fundamental group of its complement, which we write as

$$\Phi = \pi_1(\mathbb{P}^N - \Delta).$$

When we need to make precise statements, we sometimes write $\Phi_{d,n} = \pi_1(U_{d,n}, o)$, where d and n are as above, $U_{d,n} = \mathbb{P}^N - \Delta$, and o is a base point.

The groups Φ are almost always nontrivial and, in fact, are almost always *large*; that is, there is a homomorphism of Φ to a noncompact semisimple real algebraic group which has Zariski-dense image. Large groups are infinite and, moreover, always contain a free group of rank 2. This follows from the Tits alternative [35], which states that in characteristic zero a linear group either has a solvable subgroup of finite index or contains a free group of rank 2.

To show that $\Phi = \Phi_{d,n}$ is large, we consider the image $\Gamma = \Gamma_{d,n}$ of the monodromy representation

$$\rho: \Phi \longrightarrow G.$$
(1.2)

Here and throughout this paper, $G = G_{d,n}$ denotes the group of automorphisms of the primitive cohomology $H^n(X_o, \mathbb{R})_o$ that preserve the cup product. When n is odd, the primitive cohomology is the same as the cohomology; when n is even, it is the

Received 11 February 1997. Revision received 24 February 1998. 1991 *Mathematics Subject Classification*. Primary 14D05, 14D07, 14E20; Secondary 14C30, 14F35. Authors partially supported by National Science Foundation grant number DMS-9625463.