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ANISOTROPIC FLOWS FOR CONVEX PLANE CURVES

KAI-SENG CHOUand XI-PING ZHU

Introduction. Modeling the dynamics of melting solids or similar phenomena has
been a topic of study for a long time. For sharp interfaces, the motion of the interface,
that is, the boundary of the solid, is usually related to its curvature in a certain way.
One of the early models was proposed by Mullins [20] for grain boundaries. This
two-dimensional model is given by the equation

V = k, (1)

whereV andk are, respectively, the normal velocity and curvature of the interface.
Equation (1) is sometimes called the “curve shortening problem” because it is the

negativeL2-gradient flow of the length of the interface. By drawing pictures, one
can be easily convinced that a simple closed curve stays simple and smooth along
(1) and shrinks to a point in finite time, with the limiting shape of a circle. However,
a mathematical treatment of (1) turned out to be rather delicate. In fact, a rigorous
study did not exist until the early 1980s, when differential geometers considered (1)
as a tool in the search for simple closed geodesics on surfaces. It was also regarded
as a model case for more general curvature flows, which are believed to be important
in the topological classification of low-dimensional manifolds. As a first attempt,
Gage [10] proved that the isoperimetric ratio decreases along convex curves. Then in
Gage and Hamilton [12], it was shown that a convex curve stays convex and shrinks
to a point in finite time. Moreover, if one normalizes the flow by dilating it so that
the enclosing area is constant, the normalized flow converges smoothly to a circle.
Finally, Grayson [14] completed this line of investigation by showing that a simple
curve evolves into a convex one before shrinks to a point. For an alternative approach
to this result, one may consult Hamilton [18].
Recently Mullins’s theory was generalized by Gurtin [15], [16] and by Angenent

and Gurtin [4], [5] (see also the monograph of Gurtin [17]) to include anisotropy
and the possibility of a difference in bulk energies between phases. Anisotropy is
indispensable in dealing with crystalline materials. For perfect conductors, the tem-
peratures in both phases are constant. The equation becomes

β(θ)V = g(θ)k+F, (2)
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