RAMIFIED DEFORMATION PROBLEMS

BRIAN CONRAD

CONTENTS

0.	Introduction	439
1.	The deformation problem	448
	1.1. Formulation of the problem	
	1.2. Changing the data	450
	Some applications of finite Honda systems	452
	2.1. Preliminaries	452
	2.2. Initial description of $\overline{\rho}$	455
	2.3. Translation into Honda systems	460
	2.4. Classification of possible $\overline{\rho}$	
3.	Tangent space calculations	
	3.1. Analysis of a kernel	
	3.2. Analysis of an image	482
4.	Deformation rings	483
	4.1. Structure theorems	
	4.2. Another deformation problem	493
5.	The \mathcal{H}' -ordinary case	509
	5.1. Formulation of the problem	
	5.2. Honda system calculation	509
	5.3. Classification of possibilities for $\overline{\rho}$	510
	5.4. Deformation theory	511

0. Introduction. The proof of the semistable Taniyama-Shimura conjecture by Wiles [24] and Taylor-Wiles [23] uses as its central tool the deformation theory of Galois representations. In [6], Diamond extends these methods, proving that an elliptic curve $E_{/\mathbf{Q}}$ is modular if it is either semistable at 3 and 5 or is just semistable at 3, provided that the representation

$$\overline{\rho}_{E,3}: \operatorname{Gal}\left(\overline{\mathbf{Q}}/\mathbf{Q}\left(\sqrt{-3}\right)\right) \to \operatorname{Aut}\left(E[3](\overline{\mathbf{Q}})\right) \simeq \operatorname{GL}_2(\mathbf{F}_3)$$

is absolutely irreducible. His proof relies on extending the scope of the deformationtheoretic tools. The remaining obstacle to having an unconditional proof of the

Received 12 May 1997. Revision received 29 September 1997. 1991 *Mathematics Subject Classification*. Primary 14L15; Secondary 14L05. Author's research partially supported by a Department of Defense grant.