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ON THE UNITARY DUAL OF REAL REDUCTIVE LIE
GROUPS AND THE Aq(2) MODULES"
THE STRONGLY REGULAR CASE

SUSANA A. SALAMANCA-RIBA

1. Introduction. The classification of the irreducible unitary representations
of a Lie group G is a very interesting problem, not only from the point of view of
the physical applications, but also because of its importance in many areas of
mathematics. (See, for example, [23]). However, even though this problem has
been solved for nilpotent groups by Kirillov [9] and for type I solvable groups
by Auslander and Kostant [1], the reductive case is not completely understood.

In [19] Vogan and the author propose a way of reducing this problem to the
classification of a part of the unitary dual of a very special type of subgroup.
That is, we decompose the set l’Iu(G) of nonequivalent, irreducible, unitary rep-
resentations of G into disjoint sets parametrized by a discrete set of parameters
{2u). To a given representation, we associate a canonical subgroup determined
by a given parameter 2u in a way similar to the one used in [20] to parametrize
the irreducible, admissible representations of G. The choice of this subgroup was
inspired by the ideas in [20], [22], and [23], and by the author’s previous work
[16], [17], and [18].
In this paper we use this approach to prove an old conjecture of Vogan and

Zuckerman (stated in Theorem 1.8) on the classification of certain unitary repre-
sentations of a real reductive Lie group G. The search for a proof of this conjecture
is what motivated the program described in 19].
We first need some terminology and some facts before we state the theorem.

In order to expedite the statement of the result and the presentation of the argu-
ments involved in the proof, we go over this background material quickly and
without explanation in this introduction. This is general background informa-
tion on representation theory of Lie groups, especially on unitary representa-
tions. Some of this background is briefly explained in Section 2 for completeness.
The reader who is familiar with it may skip that preamble; however, we assume
knowledge of structure theory, representation theory of compact Lie groups, and
finite-dimensional representation theory of Lie groups and algebras.
To simplify matters in this section and the next, we assume that G is a real,

connected, semisimple Lie group with finite center. We use the same notation as
in [19]. Some of it is recorded here for convenience. Let 9o be the Lie algebra of
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