ON BOUNDS OF $N(\lambda)$ FOR A MAGNETIC SCHRÖDINGER OPERATOR

ZHONGWEI SHEN

To Professor Eugene Fabes

1. Introduction. In this paper we are concerned with the Schrödinger operator

(1.1)
$$H = H(\mathbf{a}, V) = -\left(\nabla - i \, \mathbf{a}(x)\right)^2 + V(x) \quad \text{in } \mathbb{R}^n.$$

Assume that the magnetic potential $\mathbf{a} \in L^2_{loc}(\mathbb{R}^n, \mathbb{R}^n)$, the electrical potential $V \ge 0$, and $V \in L^1_{loc}(\mathbb{R}^n, \mathbb{R})$. The quadratic form

(1.2)
$$h[\psi] = \int_{\mathbb{R}^n} |(\nabla - i\mathbf{a})\psi|^2 dx + \int_{\mathbb{R}^n} V|\psi|^2 dx$$

then generates a unique nonnegative selfadjoint operator in $L^2(\mathbb{R}^n, \mathbb{C})$, which we still denote by H.

Let $N(\lambda)$ denote the dimension of the spectral projection of H on $[0, \lambda)$ for $\lambda > 0$. The aim of this paper is to establish the upper and lower bounds for $N(\lambda)$ and the ground state energy E.

Given $\lambda > 0$, we divide \mathbb{R}^n into a grid of mutually disjoint cubes $\{Q_{\alpha}\}$ of side $1/\sqrt{\lambda}$. For $1 , let <math>\tilde{N}_p(\lambda)$ denote the number of cubes Q_{α} such that

(1.3)
$$C_p\left(\frac{1}{|Q_{\alpha}|}\int_{Q_{\alpha}}|\mathbf{B}|^pdx\right)^{1/p}+\left(\frac{1}{|Q_{\alpha}|}\int_{Q_{\alpha}}|V|^pdx\right)^{1/p}<\lambda,$$

where $\mathbf{B} = (b_{jk})_{1 \le i,k \le n}$, with

(1.4)
$$b_{jk} = \frac{\partial a_j}{\partial x_k} - \frac{\partial a_k}{\partial x_j},$$

is the magnetic field generated by potential a.

In the case where the magnetic potential is absent, that is, $H = -\Delta + V(x)$, it was proved by C. Fefferman and D. H. Phong (cf. [F, Theorem 3, p. 144]) that

Received 10 February 1997. Revision received 17 April 1997.

1991 Mathematics Subject Classification. 35P15, 35P20, 35Q40.

Author's work supported in part by National Science Foundation grant number DMS-9596266.