DIFFERENTIABLE CR MAPPINGS AND CR ORBITS

E. M. CHIRKA and C. REA

1. Introduction. The geometric behaviour of a CR map $F: M \rightarrow M^{\prime}$ between CR manifolds has been the object of some interest in the last years (see, e.g., [DP]). Our main purpose is to give a complete description when F is one-to-one (Theorem 1). More generally, we study the images of CR orbits when F is supposed to be only locally proper or proper (Theorem 2). We also study the propagation of the rank of F along orbits in a more general setting (Proposition 3.1). We assume that M, M^{\prime} are connected and locally embeddable in \mathbb{C}^{N}.

In [CR] we proved the following.
Theorem A [CR, Th. 2]. Let F be one-to-one and M, M^{\prime} have the same $\mathbf{C R}$ dimension. Then F is a diffeomorphism at all minimal points of $M . M, M^{\prime}$, and F are supposed to be of class $C^{2, \alpha}, 0<\alpha<1$.

At nonminimal points, this theorem fails to hold, as in the well-known example of S. Bell; there F is given by $\mathbb{C} \times \mathbb{R} \ni(z, t) \stackrel{F}{\mapsto}\left(z, t^{3}\right) \in \mathbb{C} \times \mathbb{R}$.

Theorem 1 shows that this example is in fact the prototype of a differentiable CR homeomorphism and gives in some way a complete geometric description of this kind of map.

Theorem 1. Let F be one-to-one, and let M and M^{\prime} have the same CR dimension. Then
(i) F sends diffeomorphically local and global orbits onto local and global orbits, respectively, and
(ii) the rank of F is constant along the orbits (local or global).

Here again, M, M^{\prime}, and F are supposed to be of class $C^{2, \alpha}$.
The definitions of "minimal point" and "orbit" are in Section 2.
For real hypersurfaces, it is known that local and global orbits (in this case, complex hypersurfaces) are in one-to-one correspondence when F is even only continuous. This is proved in [DP].

Theorem 1 evidently entails the following improvement of Theorem A.

$$
\begin{equation*}
\text { If } M \text { or } M^{\prime} \text { is (globally) minimal, then } F \text { is a diffeomorphism. } \tag{0}
\end{equation*}
$$

Received 6 November 1996. Revision received 14 April 1997.
Chirka's work supported by Ministero dell'Universitá e della Ricera Scientifica e Tecnologica funds and partly supported by INTAS grant number 93-0047.
Rea's work supported by Ministero dell'Universitá e della Ricerra Scientifica e Tecnologica funds.

