EMBEDDINGS OF $PGL_2(31)$ AND $SL_2(32)$ IN $E_8(\mathbb{C})$

ROBERT L. GRIESS, JR. AND A. J. E. RYBA APPENDIX A BY MICHAEL LARSEN APPENDIX B BY J.-P. SERRE

CONTENTS

0. Introduction.	181
1. Lifting and lifting of conjugacy	182
2. Embeddings of $PGL(2, 31)$ in groups of type E_8	188
3. Embeddings of $SL(2, 32)$ in groups of type E_8	195
Appendix A: Lifting homomorphisms from characteristic p to characteristic	
Zero	203
Appendix B: A letter	

0. Introduction. In this paper we continue the program, started in [CG], to classify the finite simple subgroups of $E_8(\mathbb{C})$. In particular we show that $E_8(\mathbb{C})$ has three conjugacy classes of PGL(2, 31)-subgroups and a single conjugacy class of SL(2, 32)-subgroups. We obtain three nonconjugate embeddings of the simple group PSL(2, 31) in $E_8(\mathbb{C})$ from our embeddings of PGL(2, 31). Earlier work of [CGL] constructs PSL(2, 61) as a subgroup of $E_8(\mathbb{C})$, and work of [S3] constructs PSL(2, 61) and two of our three classes of PGL(2, 31)-subgroups in $E_8(\mathbb{C})$. Our method is computational and should apply to the construction of other simple subgroups of $E_8(\mathbb{C})$. In future work, we plan to complete the determination of which finite simple groups are subgroups of $E_8(\mathbb{C})$ by classifying embeddings of PSL(2, 31), PSL(2, 41), PSL(2, 49), and Sz(8) into $E_8(\mathbb{C})$.

In Section 1, we obtain an important collection of lifting and conjugacy theorems for finite subgroups of quasisimple algebraic groups. In particular, we show that if L is a finite group and p is a prime that does not divide |L|, then the number of conjugacy classes of L-subgroups in a quasisimple algebraic group in characteristic 0 is at most the number of conjugacy classes of L-subgroups in a corresponding algebraic group in characteristic p; we give sufficient conditions for equality. It turns out that an argument with algebraic geometry techniques proves that equality holds in general. This is due to Michael Larsen, who has contributed it as Appendix A. We have also included a letter from J.-P. Serre as Appendix B. In this

Received 27 March 1996. Revision received 25 April 1997.

¹⁹⁹¹ Mathematics Subject Classification. Primary 17B, 20B, 20C, 20D, 20E, 22E.

Griess supported by National Science Foundation grant number DMS 9304279.

Ryba supported by National Security Agency grant number MDA904-97-1-0043.