THE SPACE OF RATIONAL MAPS ON \mathbb{P}^1

JOSEPH H. SILVERMAN

CONTENTS

§1.	Notation and summary of results	41
§2.	The quotient spaces M_d , M_d^s , and M_d^{ss}	47
§3.	The functors $\underline{\operatorname{Rat}}_d$ and $\underline{\operatorname{M}}_d$	50
	Fixed points, periodic points and multiplier systems	
§5.	The space M_2 is isomorphic to \mathbb{A}^2	61
§6.	The completion M_2^s of M_2	71

The set of morphisms $\phi: \mathbb{P}^1 \to \mathbb{P}^1$ of degree *d* is parametrized by an affine open subset Rat_d of \mathbb{P}^{2d+1} . In this paper, we consider the action of SL_2 on Rat_d induced by the *conjugation action* of SL_2 on rational maps; that is, $f \in \operatorname{SL}_2$ acts on ϕ via $\phi^f = f^{-1} \circ \phi \circ f$. The quotient space $M_d = \operatorname{Rat}_d/\operatorname{SL}_2$ arises very naturally in the study of discrete dynamical systems on \mathbb{P}^1 . We prove that M_d exists as an affine integral scheme over \mathbb{Z} , that M_2 is isomorphic to $\mathbb{A}^2_{\mathbb{Z}}$, and that the natural completion of M_2 obtained using geometric invariant theory is isomorphic to $\mathbb{P}^2_{\mathbb{Z}}$. These results, which generalize results of Milnor over \mathbb{C} , should be useful for studying the arithmetic properties of dynamical systems.

§1. Notation and summary of results. A rational map $\phi : \mathbb{P}^1 \to \mathbb{P}^1$ of degree d over a field K is given by a pair of homogeneous polynomials

$$\phi = [F_a, F_b] = [a_0 X^d + a_1 X^{d-1} Y + \dots + a_d Y^d, b_0 X^d + b_1 X^{d-1} Y + \dots + b_d Y^d]$$

of degree d such that F_a and F_b have no common roots (in $\mathbb{P}^1(\overline{K})$). This last condition is equivalent to the condition that

$$\operatorname{Res}(F_a,F_b)\neq 0,$$

where the resultant $\operatorname{Res}(F_a, F_b)$ is a certain bihomogeneous polynomial in the coefficient $a_0, a_1, \ldots, a_d, b_0, \ldots, b_d$. We also frequently write such maps ϕ in non-homogeneous form as

$$\phi(z) = \frac{a_0 z^d + a_1 z^{d-1} + \dots + a_{d-1} z + a_d}{b_0 z^d + b_1 z^{d-1} + \dots + b_{d-1} z + b_d}.$$

Received 5 August 1996. Revision recieved 4 November 1996.

1991 Mathematics Subject Classification. Primary 14D10, 14L30; Secondary 26A18, 58F03.

Author's research partially supported by National Science Foundation grant number DMS-9424642.