ROTATION NUMBERS OF HAMILTONIAN ISOTOPIES IN COMPLEX PROJECTIVE SPACES

DAVID THÉRET

In this paper, we prove the existence of symplectic invariants-we call them rotation numbers-for the time-1 map of a Hamiltonian isotopy in $\mathbb{C} P^{n-1}$. These invariants bear interesting properties related to the geometry of the fixed-point set of the symplectic map. They are obtained by lifting the problem to the linear space \mathbb{C}^{n}, and then using invariant generating functions to define them as solutions of a certain finite-dimensional min-max method.

1. Statement of the result. The space $\mathbb{C}^{n}(n \geqslant 2)$ is endowed with its standard Euclidean structure, denoted by $\langle\cdot, \cdot\rangle$. We take its standard symplectic form Ω to be $\Omega\left(z, z^{\prime}\right)=\left\langle i z, z^{\prime}\right\rangle$ for all z, z^{\prime} in \mathbb{C}^{n}.

Let $S^{2 n-1}$ be the unit sphere in \mathbb{C}^{n}; the group S^{1} acts on $S^{2 n-1}$, with quotient space $S^{2 n-1} / S^{1}=\mathbb{C} P^{n-1}$. We denote by $\pi: S^{2 n-1} \rightarrow \mathbb{C} P^{n-1}$ the projection and by $i: S^{2 n-1} \rightarrow \mathbb{C}^{n}$ the inclusion. There is a unique symplectic structure ω on $\mathbb{C P}^{n-1}$ that satisfies the relation $i^{*} \Omega=\pi^{*} \omega$ (see [12]). An easy computation shows that, for the case $n=2$, the symplectic area of $\mathbb{C} P^{1}$ equals π.

Let $h=\left(h_{t}\right)_{t \in[0,1]}$ be a time-dependent Hamiltonian on $\mathbb{C P}{ }^{n-1}$, and $\left(\varphi_{t}\right)_{t \in[0,1]}$ be its associated Hamiltonian isotopy. Recall that $\left(\varphi_{t}\right)_{t \in[0,1]}$ is obtained by integrating the vector field $\left(X_{t}\right)_{t \in[0,1]}$ defined by $d h_{t}=i_{X_{t}} \omega$ for t in $[0,1]$.

A number, the action of x, is associated in a standard way to any fixed point x of φ_{1} as follows. Consider the contractible loop $\gamma=\left(t \mapsto \varphi_{t}(x), t \in[0,1]\right)$ in $\mathbb{C}{ }^{n-1}$, and choose any 2-disc D such that $\partial D=\gamma$. Then the symplectic area of D is a real number defined modulo π, and is denoted by $a(x)$. The action $c(x)$ of x is

$$
c(x):=-\frac{1}{\pi}\left(a(x)+\int_{0}^{1} h_{t}\left(\varphi_{t}(x)\right) d t\right) \in \mathbb{R} / \mathbb{Z} .
$$

Our result is now the following theorem.
Theorem 1.1. There exist n rotation numbers $0<t_{1} \leqslant \cdots \leqslant t_{n} \leqslant 1$ with the following properties.
(a) The image in $S^{1} \cong \mathbb{R} / \mathbb{Z}$ of the sequence $\left(t_{1}, \ldots, t_{n}\right)$ depends only on the isotopy $\left(\varphi_{t}\right)_{t \in[0,1]}$, up to a cyclic shift of the indices and to a global rotation of S^{1}. It also depends continuously (for the C^{1}-topology) on the isotopy.

