ROTATION NUMBERS OF HAMILTONIAN ISOTOPIES IN COMPLEX PROJECTIVE SPACES

DAVID THÉRET

In this paper, we prove the existence of symplectic invariants—we call them *rotation numbers*—for the time-1 map of a Hamiltonian isotopy in \mathbb{CP}^{n-1} . These invariants bear interesting properties related to the geometry of the fixed-point set of the symplectic map. They are obtained by lifting the problem to the linear space \mathbb{C}^n , and then using invariant *generating functions* to define them as solutions of a certain finite-dimensional min-max method.

1. Statement of the result. The space \mathbb{C}^n $(n \ge 2)$ is endowed with its standard Euclidean structure, denoted by $\langle \cdot, \cdot \rangle$. We take its standard symplectic form Ω to be $\Omega(z, z') = \langle iz, z' \rangle$ for all z, z' in \mathbb{C}^n .

Let S^{2n-1} be the unit sphere in \mathbb{C}^n ; the group S^1 acts on S^{2n-1} , with quotient space $S^{2n-1}/S^1 = \mathbb{C}P^{n-1}$. We denote by $\pi : S^{2n-1} \to \mathbb{C}P^{n-1}$ the projection and by $i: S^{2n-1} \to \mathbb{C}^n$ the inclusion. There is a unique symplectic structure ω on $\mathbb{C}P^{n-1}$ that satisfies the relation $i^*\Omega = \pi^*\omega$ (see [12]). An easy computation shows that, for the case n = 2, the symplectic area of $\mathbb{C}P^1$ equals π .

Let $h = (h_t)_{t \in [0,1]}$ be a time-dependent Hamiltonian on $\mathbb{C}P^{n-1}$, and $(\varphi_t)_{t \in [0,1]}$ be its associated Hamiltonian isotopy. Recall that $(\varphi_t)_{t \in [0,1]}$ is obtained by integrating the vector field $(X_t)_{t \in [0,1]}$ defined by $dh_t = i_{X_t} \omega$ for t in [0, 1]. A number, the *action* of x, is associated in a standard way to any fixed point x

A number, the *action* of x, is associated in a standard way to any fixed point x of φ_1 as follows. Consider the contractible loop $\gamma = (t \mapsto \varphi_t(x), t \in [0, 1])$ in $\mathbb{C}P^{n-1}$, and choose any 2-disc D such that $\partial D = \gamma$. Then the symplectic area of D is a real number defined modulo π , and is denoted by a(x). The action c(x) of x is

$$c(x) := -\frac{1}{\pi} \left(a(x) + \int_0^1 h_t(\varphi_t(x)) \, dt \right) \in \mathbb{R}/\mathbb{Z}.$$

Our result is now the following theorem.

THEOREM 1.1. There exist n rotation numbers $0 < t_1 \leq \cdots \leq t_n \leq 1$ with the following properties.

(a) The image in $S^1 \cong \mathbb{R}/\mathbb{Z}$ of the sequence (t_1, \ldots, t_n) depends only on the isotopy $(\varphi_t)_{t \in [0,1]}$, up to a cyclic shift of the indices and to a global rotation of S^1 . It also depends continuously (for the C^1 -topology) on the isotopy.

Received 3 December 1996. Revision received 11 March 1997. 1991 Mathematics Subject Classification. Primary 58F05.