AN IMPROVED UPPER BOUND FOR THE 3-DIMENSIONAL DIMER PROBLEM

MIHAI CIUCU

1. Introduction. The dimer problem in dimension 3 is one of the classical unsolved problems in solid-state chemistry. It is as follows: Define a brick to be a d-dimensional $(d \geqslant 2)$ rectangular parallelepiped with sides of integer lengths; we always assume its volume to be even. A brick of volume 2 is called a dimer. The problem is to determine the number $f\left(a_{1}, \ldots, a_{d}\right)$ of dimer tilings of the brick with sides of lengths a_{1}, \ldots, a_{d}.

It is remarkable that for $d=2$ this number can be expressed in closed form, as was shown independently in [6] by Kasteleyn and in [14] by Temperley and Fisher. In contrast, for $d \geqslant 3$ no such formulas are known. Moreover, the number of dimer tilings of a brick of dimension at least 3 is not known even asymptotically. More precisely, Hammersley [4] proved that the sequence $1 /\left(a_{1} \cdots a_{d}\right) \log f\left(a_{1}, \ldots, a_{d}\right)$ approaches a finite limit ℓ_{d} as $a_{i} \rightarrow \infty, i=1, \ldots, d$. However, the exact value of ℓ_{d} is not known for $d \geqslant 3$. The most important case for applications is the case $d=3$ (see [5] and [7]).

Various upper and lower bounds for ℓ_{3} have been proved as far back as six decades ago, when Fowler and Rushbrooke [3] showed (assuming, based on physical and heuristic arguments, that the limit defining ℓ_{d} exists) that

$$
0 \leqslant \ell_{3} \leqslant \frac{1}{2} \log 3=0.54931 \ldots
$$

This upper bound was improved by Minc [7] to $1 / 12 \log 6!=0.54827 \ldots$, which represents the best upper bound previously known.

On the other hand, since ℓ_{d} is clearly a nondecreasing function of d, we obtain that a lower bound for ℓ_{3} is given by ℓ_{2}, which was determined by Kasteleyn [6] and Temperley and Fisher [14] to be

$$
\ell_{2}=1 / \pi \sum_{r \geqslant 0}(-1)^{r} /(2 r+1)^{2}=0.29156 \ldots .
$$

This lower bound has been improved several times, first by Fisher (see [1]) to 0.30187 , then by Hammersley [5] to 0.418347 , and finally by Priezzhev [11] to 0.419989 . A conjecture due to Schrijver and Valiant [12] on lower bounds for

[^0]
[^0]: Received 2 April 1997.
 1991 Mathematics Subject Classification. Primary 05B40; Secondary 82A67.
 Author's work supported by a Postdoctoral Fellowship at the Mathematical Sciences Research Institute.

