AN INDEX FOR COUNTING FIXED POINTS OF AUTOMORPHISMS OF FREE GROUPS

DAMIEN GABORIAU, ANDRE JAEGER, GILBERT LEVITT, AND MARTIN LUSTIG

Introduction. Let α be an automorphism of $F = F_n$, the free group of rank n. The Scott conjecture, proved by Bestvina-Handel [BH], states that the fixed subgroup Fix $\alpha = \{g \in F | \alpha(g) = g\}$ has rank at most n.

Using R-trees, we shall improve this result by showing the following theorem.

THEOREM 1. If α is any automorphism of F_n , then $\operatorname{rk} \operatorname{Fix} \alpha + a(\alpha)/2 \leq n$.

Here $a(\alpha)$ is the number of equivalence classes of attracting fixed points for the action of α on the boundary of F (defined below). This positively answers a conjecture of Cooper [Co, p. 455].

If Fix α is trivial, our result specializes to the following corollary.

COROLLARY 2. An automorphism α of F_n with Fix $\alpha = \{1\}$ fixes at most 4n ends of F_n .

To define $a(\alpha)$, in general, we consider the boundary δF of F (see Section 1), the Cantor set of ends of F if $n \ge 2$. If we choose a free basis g_1, \ldots, g_n , it may be viewed as the set of all infinite reduced words $X = x_1 \cdots x_i \cdots$ in the letters $g_j^{\pm 1}$. The action of α on F extends to a continuous action of α on δF . The boundary of the subgroup Fix α naturally embeds in δF , and α acts on δ (Fix α) as the identity.

We consider fixed points of α in δF . It turns out (Proposition 1.1) that such a fixed point X either belongs to $\delta(\operatorname{Fix} \alpha)$, or is attracting, or is repelling (i.e., attracting for α^{-1}). Here attracting may be understood in the topological sense $(\lim_{p\to+\infty} \alpha^p(X') = X \text{ for } X' \text{ close to } X \text{ in } F \cup \delta F)$, or in the algebraic sense of [CL1, (1.4)]. As in [CL1], we say that two fixed points $X_1, X_2 \in \delta F$ are equivalent if there exists $g \in \operatorname{Fix} \alpha$ such that $X_2 = gX_1$. Note that any point equivalent to an attracting fixed point of α is itself an attracting fixed point of α .

We let $\mathscr{A}(\alpha)$ be the set of equivalence classes of attracting fixed points of α , and we denote $a(\alpha)$ the cardinality of $\mathscr{A}(\alpha)$. The finiteness of $a(\alpha)$ follows from [Co] (or [CL1]).

Theorem 1 may be illustrated by the following example from [CL1]. Let $\alpha: F_2 \to F_2$ be given by $\alpha(a) = aba$, $\alpha(b) = ba$. The fixed subgroup has rank 1 and it is generated by $aba^{-1}b^{-1}$. One obtains two inequivalent fixed words $X_1 = ababaaba \cdots$ and $X_2 = a^{-1}b^{-1}a^{-1}b^{-1}a^{-1}b^{-1}a^{-1}\cdots$ by taking the limit as p goes to $+\infty$ of $\alpha^p(a)$ and $\alpha^p(a^{-1})$, respectively. Note that $X_3 = baabaaba \cdots = \lim_{p \to \infty} \alpha^p(b)$ is equivalent to X_1 . The automorphism α is induced

Received 5 July 1996. Revision received 19 March 1997.