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AN INDEX FOR COUNTING FIXED POINTS OF
AUTOMORPHISMS OF FREE GROUPS

DAMIEN GABORIAU, ANDRE JAEGER, GILBERT LEVITT, AND

MARTIN LUSTIG

Introduction. Let be an automorphism of F Fn, the free group of rank n.
The Scott conjecture, proved by Bestvina-Handel [BH], states that the fixed
subgroup Fix {g FI(g) g} has rank at most n.
Using R-trees, we shall improve this result by showing the following theorem.

TrmoEt 1. If is any automorphism ofFn, then rkFix + a()/2 < n.

Here a() is the number of equivalence classes of attracting fixed points for the
action of on the boundary of F (defined below). This positively answers a con-
jecture of Cooper [Co, p. 455].

If Fix is trivial, our result specializes to the following corollary.

COROLLARY 2. An automorphism of Fn with Fix {1} fixes at most 4n
ends ofFn.
To define a(t), in general, we consider the boundary 6F of F (see Section 1),

the Cantor set of ends of F if n > 2. If we choose a free basis 01,..-, 0n, it may be
viewed as the set of all infinite reduced words X xl-.-xi--, in the letters 0 1.
The action of on F extends to a continuous action of on F. The boundary of
the subgroup Fix naturally embeds in F, and acts on di(Fix ) as the identity.
We consider fixed points of in 6F. It turns out (Proposition 1.1) that such a

fixed point X either belongs to di(Fix ), or is attracting, or is repelling (i.e.,
attracting for -1). Here attracting may be understood in the topological sense
(limp+oo tP(X’) X for X’ close to X in F u F), or in the algebraic sense of
[CL1, (1.4)]. As in [CL1], we say that two fixed points X1,X2 6F are equiv-
alent if there exists e Fix such that X2 #X. Note that any point equivalent
to an attracting fixed point of is itself an attracting fixed point of .
We let () be the set of equivalence classes of attracting fixed points of ,

and we denote a() the cardinality of ’(). The finiteness of a() follows from
[Co] (or [CL1]).
Theorem 1 may be illustrated by the following example from [CL1]. Let

0t:F2 - F2 be given by (a) aba, (b) ba. The fixed subgroup has rank 1
and it is generated by aba-lb-. One obtains two inequivalent fixed words
X ababaaba and X2 a-b-a-la-b-a-lb-la-1--. by taking the limit
as p goes to + of oP(a) and tP(a-1), respectively. Note that X3
baabaaba limp_oo P(b) is equivalent to X1. The automorphism is induced
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