HIGHEST WEIGHT MODULES OVER THE $W_{1+\infty}$ ALGEBRA AND THE BISPECTRAL PROBLEM

B. BAKALOV, E. HOROZOV, AND M. YAKIMOV

0. Introduction. This paper is part of a series of papers [5]-[8] in which we study different aspects of the bispectral problem. As originally formulated by J. J. Duistermaat and F. A. Grünbaum [14], this problem asks for which ordinary differential operators $L\left(x, \partial_{x}\right)$ there exists a nonzero family of eigenfunctions $\psi(x, z)$, which are also eigenfunctions of another differential operator $\Lambda\left(z, \partial_{z}\right)$ in the spectral parameter z. That is, for which L, Λ, and ψ the following identities hold:

$$
\begin{align*}
& L\left(x, \partial_{x}\right) \psi(x, z)=f(z) \psi(x, z), \tag{0.1}\\
& \Lambda\left(z, \partial_{z}\right) \psi(x, z)=\theta(x) \psi(x, z), \tag{0.2}
\end{align*}
$$

with some functions $f(z)$ and $\theta(x)$. Both L and Λ are called bispectral operators.
Initially, the bispectral problem was connected with certain studies in computer tomography (cf. [14]). Later, it turned out to be linked to several actively developing areas of mathematical physics and, in particular, to soliton mathematics. With the present paper, we also establish such connections-this time with the Lie algebra $W_{1+\infty}$ and its subalgebras.

In order to place our work properly among the other research, we first recall the main results of the pioneering paper [14] where Duistermaat and Grünbaum classified all second order bispectral operators L. The complete list is as follows. If we present L as a Schrödinger operator

$$
L=\left(\frac{d}{d x}\right)^{2}+u(x)
$$

the bispectral potentials $u(x)$, apart from the obvious Airy $(u(x)=a x)$ and Bessel $\left(u(x)=c x^{-2}\right.$) ones, are organized into two families of potentials $u(x)$, which can be obtained by finitely many "rational Darboux transformations"
(1) from $u(x)=0$,
(2) from $u(x)=-(1 / 4) x^{-2}$.

An important difference between the two families is that while in the first case the dimension of the space of eigenfunctions $\psi(x, z)$ of (0.1) and (0.2) is 1 , in the

[^0]
[^0]: Received 9 February 1996. Revision received 7 February 1997.
 Work partially supported by Bulgarian Ministry of Education, Science, and Technology grant number MM-523/95.

 1991 Mathematics Subject Classification. Primary 58F07; Secondary 17B68, 35Q53, 58F19, 58 F35.

