# AFFINE HECKE ALGEBRAS AND RAISING OPERATORS FOR MACDONALD POLYNOMIALS 

ANATOL N. KIRILLOV and MASATOSHI NOUMI

## Contents

§1. Macdonald's $q$-difference operators ..... 4
§2. Affine Hecke algebras and the Dunkl operators ..... 6
§3. Raising operators and transition coefficients ..... 11
§4. The Mimachi basis and a representation of the Hecke algebra ..... 17
§5. Action of $D_{y}(u)$ on $\Pi(x, y)$ ..... 20
§6. Computation of the Dunkl operators acting on $\Pi(x, y)$ ..... 24
§7. $q$-difference raising operators ..... 31
§8. A double analogue of the multinomial coefficients ..... 35

Introduction. In this paper, we introduce certain raising operators and lowering operators for Macdonald polynomials (of type $A_{n-1}$ ) by means of the Dunkl operators due to I. Cherednik. The raising operators we discuss below are a natural $q$-analogue of the raising operators for Jack polynomials introduced by L. Lapointe and L. Vinet [LV1], [LV2]. As an application of our raising operators, we prove the integrality of double Kostka coefficients which had been conjectured by I. G. Macdonald [Ma1] (apart from the positivity conjecture). We also include some application to a double analogue of the multinomial coefficients.

Let $\mathbb{K}=\mathbb{Q}(q, t)$ be the field of rational functions in two indeterminates $(q, t)$, and let $\mathbb{K}[x]^{W}$ be the algebra of symmetric polynomials in $n$ variables $x=\left(x_{1}, \ldots, x_{n}\right)$ over $\mathbb{K}, W$ being the symmetric group $\mathfrak{S}_{n}$ of degree $n$. The Macdonald polynomials $P_{\lambda}(x)=P_{\lambda}(x ; q, t)$ (or symmetric functions with two parameters, in the terminology of Macdonald [Ma1]), are a family of symmetric polynomials parametrized by partitions, and they form a $\mathbb{K}$-basis of $\mathbb{K}[x]^{W}$. One way to characterize these polynomials is, among others, to consider the joint eigenfunctions in $\mathbb{K}[x]^{W}$ for the commuting family of $q$-difference operators

$$
\begin{equation*}
D_{x}^{(r)}=t^{(r)} \sum_{\substack{I \subset[1, n] \\|I|=r}} \prod_{\substack{i \in I \\ j \notin I}} \frac{t x_{i}-x_{j}}{x_{i}-x_{j}} \prod_{i \in I} T_{q, x_{i}} \quad(r=0,1, \ldots, n) . \tag{1}
\end{equation*}
$$

The Macdonald polynomial $P_{\lambda}(x)$ is characterized as the joint eigenfunction of $D_{x}^{(r)}(r=0,1, \ldots, n)$ that has the leading term $m_{\lambda}(x)$ under the dominance order

