AFFINE HECKE ALGEBRAS AND RAISING OPERATORS FOR MACDONALD POLYNOMIALS

ANATOL N. KIRILLOV AND MASATOSHI NOUMI

CONTENTS

§1.	Macdonald's q-difference operators	4
§2.	Affine Hecke algebras and the Dunkl operators	6
§3.	Raising operators and transition coefficients	11
§4.	The Mimachi basis and a representation of the Hecke algebra	17
§5.	Action of $D_y(u)$ on $\Pi(x, y)$	20
§6.	Computation of the Dunkl operators acting on $\Pi(x, y)$	24
§7.	q-difference raising operators	31
	A double analogue of the multinomial coefficients	

Introduction. In this paper, we introduce certain raising operators and lowering operators for Macdonald polynomials (of type A_{n-1}) by means of the Dunkl operators due to I. Cherednik. The raising operators we discuss below are a natural *q*-analogue of the raising operators for Jack polynomials introduced by L. Lapointe and L. Vinet [LV1], [LV2]. As an application of our raising operators, we prove the integrality of double Kostka coefficients which had been conjectured by I. G. Macdonald [Ma1] (apart from the positivity conjecture). We also include some application to a double analogue of the multinomial coefficients.

Let $\mathbb{K} = \mathbb{Q}(q, t)$ be the field of rational functions in two indeterminates (q, t), and let $\mathbb{K}[x]^W$ be the algebra of symmetric polynomials in *n* variables $x = (x_1, \ldots, x_n)$ over \mathbb{K} , *W* being the symmetric group \mathfrak{S}_n of degree *n*. The *Macdonald polynomials* $P_{\lambda}(x) = P_{\lambda}(x; q, t)$ (or symmetric functions with two parameters, in the terminology of Macdonald [Ma1]), are a family of symmetric polynomials parametrized by partitions, and they form a \mathbb{K} -basis of $\mathbb{K}[x]^W$. One way to characterize these polynomials is, among others, to consider the joint eigenfunctions in $\mathbb{K}[x]^W$ for the commuting family of *q*-difference operators

(1)
$$D_x^{(r)} = t^{\binom{r}{2}} \sum_{\substack{I \subset [1,n] \\ |I| = r}} \prod_{\substack{i \in I \\ j \notin I}} \frac{tx_i - x_j}{x_i - x_j} \prod_{i \in I} T_{q,x_i} \quad (r = 0, 1, \dots, n).$$

The Macdonald polynomial $P_{\lambda}(x)$ is characterized as the joint eigenfunction of $D_{x}^{(r)}$ (r = 0, 1, ..., n) that has the leading term $m_{\lambda}(x)$ under the dominance order

Received 11 November 1996. Revision received 6 February 1997.

1991 Mathematics Subject Classification. Primary 05E35; Secondary 81R05.