# NIEMEIER LATTICES, MATHIEU GROUPS, AND FINITE GROUPS OF SYMPLECTIC AUTOMORPHISMS OF K3 SURFACES 

SHIGEYUKI KONDŌ

## APPENDIX BY SHIGERU MUKAI

§0. Introduction. Let $X$ be a $K 3$ surface; that is, $X$ is a simply connected, compact, complex surface with a trivial canonical bundle. An automorphism $g$ of $X$ is called symplectic if $g$ acts identically on a nowhere-vanishing holomorphic 2 -form on $X$. In [6], Nikulin studied finite automorphisms of $K 3$ surfaces and gave a classification of finite abelian groups of symplectic automorphisms of $K 3$ surfaces. Mukai [4] observed that for any symplectic automorphism $g$ of a $K 3$ surface, the number of fixed points of $g$ is equal to that of an element of the same order in the Mathieu group $M_{23}$ acting on a set $\Omega$ of twenty-four elements. Based on this fact, he determined eleven maximal groups, each of which can act symplectically on a $K 3$ surface. These groups are characterized as maximal groups, which are isomorphic to subgroups in $M_{23}$ with at least five orbits on $\boldsymbol{\Omega}$. However, the proof of this result is long and contains rather difficult discussions.

The purpose of this note is to provide a simple proof of the following theorem.
Theorem [4, Thm. 0.3]. Let $G$ be a finite group of symplectic automorphisms of a K3 surface. Then $G$ is isomorphic to a subgroup of the Mathieu group $M_{23}$, which has at least five orbits on $\Omega$.

We give a sketch of our proof of this theorem. Let $X$ be a $K 3$ surface and let $G$ be a finite group acting on $X$ as symplectic automorphisms. Let $L_{G}$ be the sublattice of $H^{2}(X, \mathbf{Z})$, which is the orthogonal complement to the invariant sublattice $H^{2}(X, \mathbf{Z})^{G}$. It is known (see [6]) that $L_{G}$ is an even, negative, definite lattice with rank less than or equal to 19 , and that it contains no ( -2 )-elements. We shall see that $L_{G}$ can be primitively embedded into an even, negative, definite, unimodular lattice $N$ of rank 24 with a ( -2 )-element. $G$ can also be considered as a subgroup of the symmetry group of the Dynkin diagram of $N$ that fixes at least one vertex. (Note that the number of the vertices of the Dynkin diagram of $N$ is twenty-four.) This implies that $G$ can be embedded into the Mathieu group $M_{23}$ with at least five orbits.

The proof of the above theorem is given in $\S 3$. Our proof is a purely latticetheoretic one, based on the following results: Nikulin's theory of embeddings of even lattices into even unimodular lattices (see [7]); the classification of even,

