LIFTING OF CHARACTERS ON ORTHOGONAL AND METAPLECTIC GROUPS

JEFFREY ADAMS

1.	Introduction	129
2.	Orbit correspondence	133
3.	Stable conjugacy (continued)	138
4.	Character lifting	140
5.	Matching of Cartan subgroups: Linear groups	143
6.	Matching of Cartan subgroups: Covering groups	145
7.	Cartan subgroups	147
8.	Transfer factors	150
9.	Character formulas	153
10.	Matching conditions	154
11.	Discrete series	159
12.	Induced representations	160
13.	Complex groups	168
14.	Coherent continuation	170
15.	Example: $n = 1$	173

§1. Introduction. An important principle in representation theory and automorphic forms is that of lifting or transfer of representations between reductive algebraic groups. Endoscopic transfer and base change are primary examples. Another type of example is provided by theta-lifting between members of a reductive dual pair. In this paper, we study lifting, defined directly on characters, between special orthogonal groups SO(2n + 1) over \mathbb{R} and the nonlinear metaplectic group $\widetilde{Sp}(2n, \mathbb{R})$. This is closely related both to endoscopy and theta-lifting, and is an aspect of the duality between root systems of types B_n and C_n .

Let π be an irreducible representation of SO(p,q), the special orthogonal group of a symmetric bilinear form in p+q=2n+1 real variables; π has a nonzero theta-lift to a representation π' of $\widetilde{Sp}(2n, \mathbb{R})$. A natural question is, What is the relationship, if any, between the global characters of π and π' ? When n=1, this is closely related to the Shimura correspondence, which has been the subject of extensive study.

Evidence for such a relation is provided by the orbit correspondence, which induces a matching of semisimple conjugacy classes of SO(p,q) and $Sp(2n,\mathbb{R})$. This is analogous to the matching of stable conjugacy classes in the theory of

Author's work partially supported by National Science Foundation grant DMS-94-01074.

Received 11 September 1996. Revision received 6 January 1997.