ASYMPTOTIC OF THE DENSITY OF STATES FOR THE SCHRÖDINGER OPERATOR WITH PERIODIC ELECTRIC POTENTIAL

BERNARD HELFFER AND ABDEREMANE MOHAMED

1. Introduction. We are interested in the study of the spectral properties of the Schrödinger operator on $L^2(\mathbb{R}^n)$, with $n \ge 2$,

$$P_V = \sum_{j=1}^n D_{x_j}^2 + V(x), \qquad (1.1)$$

where $D_{x_j} = -i\partial_{x_j} = (1/i)(\partial/\partial x_j)$, for j = 1, ..., n. The potential $x \mapsto V(x)$ is real and

$$V(\cdot) \in C^{\infty}(\mathbb{R}^n; \mathbb{R}).$$
(1.2)

Let Γ be a lattice on \mathbb{R}^n ,

$$\Gamma = \left\{ \sum_{j=1}^{n} k_j e_j; \ k = (k_1, \dots, k_n) \in \mathbb{Z}^n \right\},\tag{1.3}$$

where $\{e_1, \ldots, e_n\}$ is a basis of \mathbb{R}^n .

We assume that the potential is periodic:

$$V(x+a) = V(x), \quad \forall a \in \Gamma.$$
 (1.4)

It is well known that P_V is essentially selfadjoint on $L^2(\mathbb{R}^n)$, starting from $C_0^{\infty}(\mathbb{R}^n)$, the space of C^{∞} functions with compact support. For any function $f \in C_0^{\infty}(\mathbb{R})$, the bounded operator on $L^2(\mathbb{R}^n) f(P_V)$ has, due to the ellipticity of P_V , a C^{∞} kernel $K_{f(P_V)}(x, y)$. The Γ -periodicity of V shows that this kernel satisfies

$$K_{f(P_V)}(x+a,y+a) = K_{f(P_V)}(x,y), \qquad \forall a \in \Gamma, \quad \forall x, y \in \mathbb{R}^n,$$
(1.5)

and in particular the function $x \mapsto K_{f(P_V)}(x, x)$ is Γ -periodic:

$$K_{f(P_{\nu})}(x+a,x+a) = K_{f(P_{\nu})}(x,x), \qquad \forall a \in \Gamma, \quad \forall x \in \mathbb{R}^{n}.$$
(1.6)

(See [HS1] and [Sjö] for details.)

Received 5 November 1996. Revision received 11 December 1996.