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1. Introduction. Recall the classical Riesz convolution-rearrangement in-
equality in [24] (see [9] for a more general result)

L Jtf(x)7(x-y)h(y) dxdy< JtIf# (x)g# (x y)h# (y)dxdy

for positive functions on IR, where, given a function F on IR, the function F# is
the symmetric decreasing rearrangement of F. That is, the unique lower-semi-
continuous function on IR, which is equimeasurable with F, is (not necessarily
strictly) decreasing on [0, ), and satisfies F# (x) F# (-x) for all x. Of special
interest is the case where g is already symmetric decreasing, that is, where
g# g. That case can be expressed as

(1.1) It Itf(x)r(lx yl)h(y) dxdy < It Itf# (x)r(lx yl)h# (y) dxdy

for a decreasing function K on [0, ). Inequalities like (1.1) are valid for a num-
ber of different types of rearrangements on IRn, n, and IHn and often have inter-
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