DISCRETE CONVOLUTION-REARRANGEMENT INEQUALITIES AND THE FABER-KRAHN INEQUALITY ON REGULAR TREES

ALEXANDER R. PRUSS

CONTENTS

1. Introduction. Recall the classical Riesz convolution-rearrangement inequality in [24] (see [9] for a more general result)

$$\int_{\mathbb{R}} \int_{\mathbb{R}} f(x)g(x-y)h(y) \, dx dy \le \int_{\mathbb{R}} \int_{\mathbb{R}} f^{\#}(x)g^{\#}(x-y)h^{\#}(y) \, dx dy$$

for positive functions on \mathbb{R} , where, given a function F on \mathbb{R} , the function $F^{\#}$ is the symmetric decreasing rearrangement of F. That is, the unique lower-semi-continuous function on \mathbb{R} , which is equimeasurable with F, is (not necessarily strictly) decreasing on $[0, \infty)$, and satisfies $F^{\#}(x) = F^{\#}(-x)$ for all x. Of special interest is the case where g is already symmetric decreasing, that is, where $g^{\#} = g$. That case can be expressed as

(1.1)
$$\int_{\mathbb{R}} \int_{\mathbb{R}} f(x) K(|x-y|) h(y) \, dx dy \leqslant \int_{\mathbb{R}} \int_{\mathbb{R}} f^{\#}(x) K(|x-y|) h^{\#}(y) \, dx dy$$

for a decreasing function K on $[0, \infty)$. Inequalities like (1.1) are valid for a number of different types of rearrangements on \mathbb{R}^n , \mathbb{S}^n , and \mathbb{H}^n and often have inter-

Received 23 July 1996. Revision received 18 November 1996.

Author's work partially supported by National Science Foundation grant number DMS-9022140 and by Professor J. J. F. Fournier's Natural Sciences and Engineering Research Council grant number 4822.