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DISCRETE CONVOLUTION-REARRANGEMENT
INEQUALITIES AND THE FABER-KRAHN INEQUALITY
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1. Introduction. Recall the classical Riesz convolution-rearrangement in-
equality in [24] (see [9] for a more general result)

j j F(X)g(x - y)h(y) dxdy < j j F*(x)g* (x — y)h* (y) dxdy
RJR RJR

for positive functions on IR, where, given a function F on IR, the function F# is
the symmetric decreasing rearrangement of F. That is, the unique lower-semi-
continuous function on R, which is equimeasurable with F, is (not necessarily
strictly) decreasing on [0, 00), and satisfies F# (x) = F# (—x) for all x. Of special
interest is the case where g is already symmetric decreasing, that is, where
g* = g. That case can be expressed as

1) [ [ oKGx= Db dsdy < [ | 7 K(x - yDn* () dxdy
R JR R JR
for a decreasing function K on [0, o). Inequalities like (1.1) are valid for a num-
ber of different types of rearrangements on IR”, S", and IH" and often have inter-
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