TIME DECAY FOR THE BOUNDED MEAN OSCILLATION OF SOLUTIONS OF THE SCHRÖDINGER AND WAVE EQUATIONS

S. J. MONTGOMERY-SMITH

1. Introduction. Consider the wave equation

$$\partial_t^2 u(t, x) = \Delta u(t, x),$$

 $u(0, x) = 0,$
 $\partial_t u(0, x) = f,$

where $t \in \mathbf{R}$, $x \in \mathbf{R}^d$, and $f \in L_2(\mathbf{R}^d)$. Let us write once and for all $B_t f = u(t, \cdot)$, so that $\widehat{B_t f}(\zeta) = (\sin(t|\zeta|)/|\zeta|)\widehat{f}(\zeta)$. In this paper we discuss the endpoints of the following assertion.

ASSERTION $(B_{d,p,q})$. If $f \in L_2(\mathbb{R}^d)$, then $t \mapsto B_t f$ is in $L_q(\mathbb{R}, L_p(\mathbb{R}^d))$, and there exists a constant c independent of f such that

$$\left(\int_{-\infty}^{\infty}\|B_tf\|_p^q\,dt\right)^{1/q}\leqslant c\|f_2\|.$$

If $p, q \ge 1$, then by standard arguments, it is easy to show that this is equivalent to its dual assertion. Here, as in the rest of the paper, 1/p + 1/p' = 1/q + 1/q' = 1.

ASSERTION $(B_{d,p',q'}^*)$. If $t \mapsto f_t$ is in $L_{q'}(\mathbf{R}, L_{p'}(\mathbf{R}^d))$, then $\int_{-\infty}^{\infty} B_t f_t dt$ (exists almost everywhere and) is in $L_2(\mathbf{R}^d)$, and there exists a constant c independent of f_t such that

$$\left\|\int_{-\infty}^{\infty} B_t f_t \, dt\right\|_2 \leq c \left(\int_{-\infty}^{\infty} \|f_t\|_{p'}^{q'} \, dt\right)^{1/q'}.$$

In stating these assertions, we always suppose that d, p, and q satisfy the fol-

Received 31 July 1996.

Author's research funded in part by National Science Foundation grant number DMS-9424396.