SERRIN'S RESULT FOR HYPERBOLIC SPACE AND SPHERE

S. KUMARESAN and JYOTSHANA PRAJAPAT

§1. Introduction. In [5] "A symmetry problem in potential theory," J. Serrin proved that for a bounded domain $\Omega \subset \mathbb{R}^{n}$, a positive solution of the differential equation

$$
\begin{equation*}
\Delta u+f(u)=0 \quad \text { in } \Omega \tag{1}
\end{equation*}
$$

with boundary conditions

$$
\begin{equation*}
u=0, \quad \frac{\partial u}{\partial v}=\text { constant } \quad \text { on } \partial \Omega, \tag{2}
\end{equation*}
$$

where f is a C^{1} function, is radially symmetric, and that Ω is a ball. In this paper, we prove a similar result for bounded domains in the n-dimensional hyperbolic space $\mathbf{H}^{\mathbf{n}}$ and sphere $\mathbf{S}^{\mathbf{n}}$. We shall consider a bounded domain Ω with C^{1} boundary and equations (1) and (2), where Δ is the Laplace-Beltrami operator of respective spaces. More precisely, we prove the following theorem.

Theorem 1. Let $\boldsymbol{\Omega} \subset \mathbf{H}^{n}$ be a bounded domain. Let $u \in C^{2}(\bar{\Omega})$ be a positive solution of

$$
\begin{equation*}
\Delta u+f(u)=0 \quad \text { in } \Omega \tag{3}
\end{equation*}
$$

with boundary conditions

$$
\begin{equation*}
u=0, \quad \frac{\partial u}{\partial v}=c \quad \text { on } \partial \Omega, \tag{4}
\end{equation*}
$$

where f is $a C^{1}$ function, c is a constant, and $\frac{\partial u}{\partial v}$ denotes the normal derivative along the inward normal field on $\partial \Omega$. Then
(i) Ω is a geodesic ball, and
(ii) u is radially symmetric.

In [5], Serrin used the method of moving planes to prove the symmetry of the solution as well as the domain. The moving plane method works for domains in Euclidean space \mathbb{R}^{n} since the isometries of \mathbb{R}^{n} are generated by reflections with

