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LINEAR DILATATION OF QUASICONFORMAL MAPS
IN SPACE

PASI SEITTENRANTA

1. Introduction. The purpose of this paper is to present an explicit sharp
upper bound for the linear dilatation of K-quasiconformal (K-qc) maps. This
bound yields a solution to a well-known open problem.

Let f be a homeomorphism from a domain D of Rn into Rn. Then

H(x, f) lim sup L’x’ f,r)
r-0+ l(x, f, r)

is the linear dilatation of f, where

L(x, f,r) mzaX{lf(z -f(x)l lz- xl r},

l(x, f, r) min{lf(z -f(x)l’lz xl-- r},

x e D, and B(x, r) c D. For domains D of Rn and K-quasiconformal maps (see
Section 2.1), we define

H(K, D) sup{H(x, f)" x e D, f: D D’ is K-qc, where O’ c Rn}.

A. Mori [M] proved in 1957 that H(K,D) < eI( when D is a subdomain of
R2. In 1959, O. Lehto, K. I. Virtanen, and J. V/iis/il/i [LVV] found the exact
value for H(K, R2). In terms of z2, the capacity of the Teichmiiller ring (see Sec-
tion 2.1),

(1.1) ,,].(K) =- H(K,R2) -=-zI(z2(1)/K).

Dao-shing Shah and Le-le Fan [SF] proved in 1960 that H(K,D) has the same
value also when D is a subdomain of R2. In 1962, F. W. Gehring [G] proved that

)l/(n-1))Kogn-1
(1.2) H(K,D) < d(n,K) =_ exp

k, Zn(1)

where D is a subdomain of Rn and COn-1 is the surface area of the unit sphere Sn-1.
Note that for n 2, Gehring’s inequality (1.2) gives the bound of Mori, since
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