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STRUCTURE OF THE RESOLVENT FOR
THREE-BODY POTENTIALS

ANDRAS VASY

1. Introduction. In this paper we construct a parametrix for the resolvent of
the three-body Hamiltonian Hy = A + )", V; when the two-body potentials are
real valued and Schwartz: V; € #(X?). Here A is the positive Laplacian on RY,
and X' are linear subspaces of RY. The (reduced) three-body problem has the
important property that X; n X; = {0} for i #j where X; = (X')*. The con-
struction is performed via a finite iteration of the two-body resolvents which is in
many ways similar to Faddeev’s original approach [10]. This is facilitated by the
use of the scattering calculus introduced by Melrose in [29] and motivated by
the parametrix construction of Melrose and Zworski for the Poisson operator in
[31].

Thus, we identify RY with the interior of its radial compactification S
upper hemlsphere v1a the stereographic projection SP: RN — SN Let C =
X; nSY! where V! = 6SN X; = cl(SP(X;)). Then V; € (SN \Ci) and vanishes
to infinite order on SN~ l\C, Note that the condition X; n X; = {0} for i #j
becomes C; N C; = . Our approach will enable us to descrlbe the asymptotic
behavior of the resolvent applied to Schwartz functions and to obtain the struc-
ture of the three-cluster to three-cluster part of the scattering matrix. Namely, we
prove the following theorem, which was conjectured by Melrose (motivated by

[31]).

THEOREM. The three-cluster to three-cluster part of the (absolute) scattering
matrix is a sum of Fourier integral operators on SN~ U C; associated to the
“broken” geodesic flow, broken at points in | ),C;, at distance n.

Andrew Hassell had previously proved the corresponding theorem for the
scattering matrix of the unreduced two-body Hamiltonian (i.e., the case when we
only have one two-body potential) [16].

We denote the (modified) resolvent of Hy by Ry(4). Thus, our normalization
is that of [30], so Ry(1) = (Hy — /12)' in the “physical half-plane” where
Im 4 <0, and for ¢ > 0 (Hy — (6 + i0))™! = Ry(F¢/2). We also show in this
paper that away from | ),Ci, Ry(1)f (here f € &(IRV)) has the same behavior as
in the free problem; that is, for A > 0

Ry(A)f(r) ~ e *r~W-1D/2 % "r=ig,(f)
j=0
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