STRUCTURE OF THE RESOLVENT FOR THREE-BODY POTENTIALS

ANDRÁS VASY

1. Introduction. In this paper we construct a parametrix for the resolvent of the three-body Hamiltonian $H_{V}=\Delta+\sum_{i} V_{i}$ when the two-body potentials are real valued and Schwartz: $V_{i} \in \mathscr{S}\left(X^{i}\right)$. Here Δ is the positive Laplacian on \mathbb{R}^{N}, and X^{i} are linear subspaces of \mathbb{R}^{N}. The (reduced) three-body problem has the important property that $X_{i} \cap X_{j}=\{0\}$ for $i \neq j$ where $X_{i}=\left(X^{i}\right)^{\perp}$. The construction is performed via a finite iteration of the two-body resolvents which is in many ways similar to Faddeev's original approach [10]. This is facilitated by the use of the scattering calculus introduced by Melrose in [29] and motivated by the parametrix construction of Melrose and Zworski for the Poisson operator in [31].
Thus, we identify \mathbb{R}^{N} with the interior of its radial compactification \mathbb{S}_{+}^{N}, the upper hemisphere, via the stereographic projection $S P: \mathbb{R}^{N} \rightarrow \mathbb{S}_{+}^{N}$. Let $C_{i}=$ $\bar{X}_{i} \cap \mathbb{S}^{N-1}$ where $\mathbb{S}^{N-1}=\partial \mathbb{S}_{+}^{N}, \bar{X}_{i}=\operatorname{cl}\left(\mathbf{S P}\left(X_{i}\right)\right)$. Then $V_{i} \in\left(\mathbb{S}_{+}^{N} \backslash C_{i}\right)$ and vanishes to infinite order on $\mathbb{S}^{N-1} \backslash C_{i}$. Note that the condition $X_{i} \cap X_{j}=\{0\}$ for $i \neq j$ becomes $C_{i} \cap C_{j}=\varnothing$. Our approach will enable us to describe the asymptotic behavior of the resolvent applied to Schwartz functions and to obtain the structure of the three-cluster to three-cluster part of the scattering matrix. Namely, we prove the following theorem, which was conjectured by Melrose (motivated by [31]).

Theorem. The three-cluster to three-cluster part of the (absolute) scattering matrix is a sum of Fourier integral operators on $\mathbb{S}^{N-1} \backslash \bigcup_{i} C_{i}$ associated to the "broken" geodesic flow, broken at points in $\bigcup_{i} C_{i}$, at distance π.

Andrew Hassell had previously proved the corresponding theorem for the scattering matrix of the unreduced two-body Hamiltonian (i.e., the case when we only have one two-body potential) [16].

We denote the (modified) resolvent of H_{V} by $R_{V}(\lambda)$. Thus, our normalization is that of [30], so $R_{V}(\lambda)=\left(H_{V}-\lambda^{2}\right)^{-1}$ in the "physical half-plane" where $\operatorname{Im} \lambda<0$, and for $\sigma>0\left(H_{V}-(\sigma \pm i 0)\right)^{-1}=R_{V}\left(\mp \sigma^{1 / 2}\right)$. We also show in this paper that away from $\bigcup_{i} C_{i}, R_{V}(\lambda) f$ (here $f \in \mathscr{S}\left(\mathbb{R}^{N}\right)$) has the same behavior as in the free problem; that is, for $\lambda>0$

$$
R_{V}(\lambda) f(r \theta) \sim e^{-i \lambda r} r^{-(N-1) / 2} \sum_{j \geqslant 0} r^{-j} g_{j}(\theta)
$$

Received 23 April 1996. Revision received 19 September 1996.

