THE RANGE CHARACTERIZATIONS OF THE TOTALLY GEODESIC RADON TRANSFORM ON THE REAL HYPERBOLIC SPACE

SATOSHI ISHIKAWA

0. Introduction	149
1. Preliminaries	154
2. The properties of differential operators	159
3. The definition of L^p -type rapidly decreasing function spaces on G/K or	
$G/H_0^{(k)}$ and the definition of the totally geodesic Radon transform	163
4. The Poisson transform and the explicit computation of spherical	
functions	166
5. The Payley-Wiener-type theorem for $S^p(G/K)$ and the asymptotic	
expansion of rapidly decreasing functions	172
6. The inclusion theorem for $\mathfrak{F}^{(k)}(S^p(G/H_0^{(k)}))$	178
7. The relation between the Radon transform and the Fourier transform	181
8. The asymptotic property of <i>R</i>	183
9. The injectivity theorem of the Fourier transform on $G/H_0^{(k)}$	184
10. The characterizations of $R(S^p(G/K))$	192
11. The characterizations of $R(C_0^{\infty}(G/K))$	

0. Introduction. Let G be a real Lie group, K and H be its closed unimodular subgroups, and $\Gamma(G/K)$ be a rapidly decreasing function space in $C^{\infty}(G/K)$. If

$$(R.f)(g.H) = \int_{H} f(gh.K) dh$$

converges for all $g \in G$ and $R.f \in C^{\infty}(G/H)$ for all $f \in \Gamma(G/K)$ where dh is the invariant measure on H, then we can define the integral transform

$$R: \Gamma(G/K) \to C^{\infty}(G/H)$$
,

and R is a G-module homomorphism. Thus the range space $R(\Gamma(G/K))$ is annihilated by $\operatorname{Ann}_{U(\mathfrak{g})}C^{\infty}(G/K)$, namely, the annihilator ideal of the left $U(\mathfrak{g})$ -module $C^{\infty}(G/K)$ where \mathfrak{g} is the Lie algebra of G and $U(\mathfrak{g})$ is the universal enveloping algebra of \mathfrak{g} . This implies that all the functions in the range space satisfy any linear partial differential equation on G/H constructed from the left

Received 12 October 1995. Revision received 26 June 1996.