AN ALGORITHM OF COMPUTING b-FUNCTIONS

TOSHINORI OAKU

To Professor Hikosaburo Komatsu on the occasion of his sixtieth birthday

1. Introduction. Let $f(x) \in K[x]=K\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial of n variables with coefficients in a field K of characteristic zero. Let us denote by

$$
A_{n}(K):=K\left[x_{1}, \ldots, x_{n}\right]\left\langle\partial_{1}, \ldots, \partial_{n}\right\rangle, \quad \hat{\mathscr{D}}_{n}(K):=K\left[\left[x_{1}, \ldots, x_{n}\right]\right]\left\langle\partial_{1}, \ldots, \partial_{n}\right\rangle
$$

the rings of differential operators with polynomial and formal power series coefficients, respectively, with $\partial_{i}=\partial / \partial x_{i}$ and $\partial=\left(\partial_{1}, \ldots, \partial_{n}\right) .\left(A_{n}(K)\right.$ is called the Weyl algebra over K.)

Let s be a parameter. Then the (local) b-function (or the Bernstein-Sato polynomial) $b_{f}(s)$ associated with $f(x)$ is the monic polynomial of the least degree $b(s) \in K[s]$ satisfying

$$
\begin{equation*}
P(s, x, \partial) f(x)^{s+1}=b(s) f(x)^{s} \tag{1.1}
\end{equation*}
$$

with some $P(s, x, \partial) \in \hat{\mathscr{D}}_{n}(K)[s]$. The monic polynomial of the least degree $b(s)$ $\in K[s]$ satisfying (1.1) with some $P(s, x, \partial) \in A_{n}(K)[s]$ is denoted by $\tilde{b}_{f}(s)$. The existence of $\tilde{b}_{f}(s)$ was proved by I. N. Bernstein $[\mathrm{Be} 1],[\mathrm{Be} 2]$, which implies the existence of $b_{f}(s)$. Note that $b_{f}(s)$ divides $\tilde{b}_{f}(s)$, but $b_{f}(s)$ and $\tilde{b}_{f}(s)$ are not necessarily identical. More generally, the existence of $b_{f}(s)$ for $f(x) \in K[[x]]$ was proved by J. E. Björk [Bj].

In this paper, we present an algorithm for, given $f(x) \in K[x]$, computing $b_{f}(s)$ and finding a $P(s, x, \partial) \in \hat{\mathscr{D}}_{n}(K)$ that satisfies (1.1) with $b(s)=b_{f}(s)$. More precisely, our algorithm finds a $Q(s, x, \partial) \in A_{n}(K)[s]$ and an $a(x) \in K[x]$ with $a(0) \neq 0$ such that $P(s, x, \partial)=(1 / a(x)) Q(s, x, \partial)$ satisfies (1.1) with $b(s)=b_{f}(s)$. Computing $\tilde{b}_{f}(s)$ and an associated $P \in A_{n}(K)[s]$ is slightly easier.

An algorithm of computing $b_{f}(s)$ was first given by M. Sato et al. [SKKO] when $f(x)$ is a relative invariant of a prehomogeneous vector space. J. Briançon et al. [BGMM] and Ph. Maisonobe [Mai] gave an algorithm of computing $b_{f}(s)$ for $f(x)$ with isolated singularity. Also note that T. Yano [Y] worked out many interesting examples of b-functions systematically.

Our method consists in computing the (generalized) b-function for a section of a holonomic system (or more generally, a specializable D-module) via Gröbner basis computation in the Weyl algebra. In general, let M be a finitely generated

