LOCAL SOLVABILITY OF ANALYTIC PSEUDODIFFERENTIAL COMPLEXES IN TOP DEGREE

ZUHONG HAN

1. Introduction. The present work concerns the local solvability of analytic pseudodifferential complexes in top degree associated to a Frobenius ideal of codimension one in the ring of pseudodifferential operators. Without further specification, all operators are analytic throughout this paper. Let Ω be an open subset in \mathbb{R}^{n+1} and $\Psi(\Omega)$ be the ring of pseudodifferential operators on Ω . A left ideal \mathscr{P} in $\Psi(\Omega)$ is said to be a Frobenius ideal of rank *n* if, for every point $y \in \Omega$, there exists an open neighborhood *U* of *y* and *n* first-order pseudodifferential operators $P_1, \ldots, P_n \in \mathscr{P}$, such that P_1, \ldots, P_n are linearly independent over $\Psi(U)$, and for all $P \in \mathscr{P}$, there exist $A_1, \ldots, A_n \in \Psi(U)$ such that

$$P=\sum_{i=1}^n A_i P_i,$$

and there exist $c_{jk}^{l} \in \Psi^{0}(\Omega)$ such that

$$[P_j, P_k] = \sum_l c_{jk}^l P_l.$$

We define the characteristic set of \mathscr{P} to be char $\mathscr{P} = \operatorname{char} P_1 \cap \cdots \cap \operatorname{char} P_n$. Our entire analysis will focus on a neighborhood of 0. \mathscr{P} is said to be elliptic at 0 if char $\mathscr{P}|_0 = \{0\}$. In this paper, we assume that \mathscr{P} is nonelliptic at 0. Furthermore, we require that \mathscr{P} has simple real characteristics, that is, for every $\gamma = (y, \eta) \in$ char $\mathscr{P}, d_\eta p_{1,0}, \ldots, d_\eta p_{n,0}$ are independent over \mathbb{C} at γ , where η is the fiber variable of the cotangent bundle $T^*\Omega$, and $p_{1,0}, \ldots, p_{n,0}$ are the principal symbols of P_1, \ldots, P_n , respectively. We study the local solvability of the following equation:

(1.1)
$$P_1u_1 + P_2u_2 + \cdots + P_nu_n = f.$$

Equation (1.1) is *locally solvable* at 0 if there exist open neighborhoods $V \subset U$ of 0, such that for any function $f \in C^{\infty}(U)$, there exist $u_1, u_2, \ldots, u_n \in \mathscr{E}'(U)$ which satisfy (1.1) in V. For convenience, usually we write (1.1) as

$$Pu = f$$
,

where $P = (P_1, P_2, \dots, P_n)$, $u = (u_1, u_2, \dots, u_n)^T$, T denotes the transpose.

Received 11 December 1995. Revision received 2 May 1996.