POINTWISE ERGODIC THEOREMS FOR RADIAL AVERAGES ON SIMPLE LIE GROUPS II

AMOS NEVO

§1. Statement of results, the method of proof, and some remarks

1.1. Definitions and statement of results. The present paper is a continuation of [N1], and we begin by briefly recalling the setup and the notation:

- $G=G_{n}=\operatorname{SO}^{0}(n, 1)$ is the group of orientation-preserving isometries of n dimensional real hyperbolic space $H^{n}, n \geqslant 2$.
- $K=$ a fixed maximal compact subgroup. $m_{K}=$ Haar probability measure.
- $A=\left\{a_{t} \mid t \in \mathbb{R}\right\}=$ a one-parameter group of hyperbolic translations such that $G=K A_{+} K$ is a Cartan decomposition.
- $\sigma_{t}=$ the bi- K-invariant probability measure on G given by $\sigma_{t}=m_{K} * \delta_{a_{t}} *$ m_{K}, where $*$ denotes convolution. Note that $\sigma_{0}=m_{K}$.
- $\mu_{t}=1 / t \int_{0}^{t} \sigma_{s} d s$, the uniform average of $\sigma_{s}, 0 \leqslant s \leqslant t$. We define $\mu_{0}=m_{K}$.
- $M(G, K)=$ the commutative convolution algebra (of bi-K-invariant complex bounded Borel measures on G) generated by $\sigma_{t}, t \geqslant 0$.
- $(X, \mathscr{B}, \lambda)=$ a standard Borel space with a Borel measurable G-action which preserves the probability measure λ.
- $\pi(v) f(x)=\int_{G} f\left(g^{-1} x\right) d v(g)=$ the Markov operator on $L^{p}(X)$ corresponding to a probability measure v on G.
- $M_{\mu} f(x)=\sup _{t \geqslant 0}\left|\pi\left(\mu_{t}\right) f(x)\right|$, and $M_{\sigma} f(x)=\sup _{t \geqslant 0}\left|\pi\left(\sigma_{t}\right) f(x)\right|$, maximal functions associated with the action of σ_{t} and μ_{t} in $L^{p}(X), 1 \leqslant p \leqslant \infty$.
Finally, recall also the following definition.
Definition. Let $v_{t}, t \geqslant 0$, be a one-parameter family of probability measures on G. Assume that $t \mapsto v_{t} \in M(G)$ is continuous in the w^{*}-topology of $M(G)$ as the dual of $C_{0}(G)$. Let $(X, \mathscr{B}, \lambda)$ denote a G-space as above.
(1) v_{t} is called a pointwise ergodic family in L^{p} if, for any $f \in L^{p}(X)$,

$$
\lim _{t \rightarrow \infty} \pi\left(v_{t}\right) f(x)=E_{1}(f)(x),
$$

where the convergence is pointwise almost everywhere and in the $L^{p_{-}}$ norm, and E_{1} is the conditional expectation of f with respect to the σ algebra of G-invariant sets.
(2) v_{t} is said to satisfy the local ergodic theorem in L^{p} if, for any $f \in L^{p}(X)$, $\lim _{t \rightarrow 0} \pi\left(v_{t}\right) f(x)=\pi\left(v_{0}\right) f(x)$, where the convergence is for almost every x, and in the L^{p}-norm.

