ERRATUM TO "TRANSLATES OF FUNCTIONS OF TWO VARIABLES"

HÅKAN HEDENMALM

It has come to my attention that the argument on pages 288-290 of [1] is flawed. The problem is that $\bar{\partial} \Phi \wedge \bar{\partial} \Phi$ need not be 0 .

Here we correct the argument, following the steps of [2] more closely. Let us write $\Lambda_{(0, r)}^{s}$ for the space of forms $\Lambda^{s}\left(\mathscr{R}_{(0, r)}\right)$ appearing in [1], where \mathscr{R} is an appropriate ring of continuous functions on Π^{2}. Let $\mathbf{g}^{\prime}=\chi_{\lambda} \wedge \boldsymbol{\Phi} \in \Lambda_{(0,0)}^{1}$, and note that $P_{\mathbf{f}} \mathbf{g}^{\prime}=\chi_{\lambda}$ and $\bar{\partial} \mathbf{g}^{\prime}=\bar{\partial} \chi_{\lambda} \wedge \boldsymbol{\Phi}+\chi_{\lambda} \wedge \bar{\partial} \boldsymbol{\Phi}$. Set

$$
\mathbf{h}^{\prime}=\boldsymbol{\Phi} \wedge \bar{\partial} \mathbf{g}^{\prime}=\bar{\partial} \chi_{\lambda} \wedge \Phi \wedge \Phi+\chi_{\lambda} \wedge \Phi \wedge \bar{\partial} \boldsymbol{\Phi}=\chi_{\lambda} \wedge \Phi \wedge \bar{\partial} \Phi \in \Lambda_{(0,1)}^{2}
$$

and observe that $P_{\mathrm{f}} \mathbf{h}^{\prime}=\chi_{\lambda} \wedge \bar{\partial} \boldsymbol{\Phi}$. Let

$$
\mathbf{h}^{\prime \prime}=\boldsymbol{\Phi} \wedge \bar{\partial} \mathbf{h}^{\prime}=\chi_{\lambda} \wedge \boldsymbol{\Phi} \wedge \bar{\partial} \boldsymbol{\Phi} \wedge \bar{\partial} \boldsymbol{\Phi} \in \Lambda_{(0,2)}^{3}
$$

and note that $P_{\mathbf{f}} \mathbf{h}^{\prime \prime}=\chi_{\lambda} \wedge \bar{\partial} \Phi \wedge \bar{\partial} \Phi$. As a differential form, $\mathbf{h}^{\prime \prime}$ has order (0,2), and since the complex dimension of the region is 2 , it follows that $\bar{\partial} h^{\prime \prime}=0$. We find an $\mathbf{h}^{\prime \prime \prime} \in \Lambda_{(0,1)}^{3}$ such that $\bar{\partial} \mathbf{h}^{\prime \prime \prime}=\mathbf{h}^{\prime \prime}$, and set $\mathbf{h}=\mathbf{h}^{\prime}-P_{\mathbf{f}} \mathbf{h}^{\prime \prime \prime} \in \Lambda_{(0,1)}^{2}$, for then $P_{\mathbf{f}} \mathbf{h}=$ $\chi_{\lambda} \wedge \bar{\partial} \boldsymbol{\Phi}$, and $\bar{\partial} \mathbf{h}=-\bar{\partial} \chi_{\lambda} \wedge \bar{\partial} \boldsymbol{\Phi} \wedge \Phi$. Let $\mathbf{y} \in \Lambda_{(0,1)}^{2}$ solve

$$
\bar{\partial} \mathbf{y}=\left(1-(\lambda+4) \widehat{A^{2}}\right)^{-1} \bar{\partial} \chi_{\lambda} \wedge \bar{\partial} \mathbf{\Phi} \wedge \boldsymbol{\Phi} ;
$$

the right-hand side is $\bar{\partial}$-closed because it is a $(0,2)$-form, and the singularity of the first factor is swallowed by $\bar{\partial} \chi_{\lambda}$. The form $\mathbf{g}^{\prime \prime}=\mathbf{h}+\left(1-(\lambda+4) \widehat{A^{2}}\right) \mathbf{y} \in \Lambda_{(0,1)}^{2}$ is then $\bar{\partial}$-closed, that is, $\bar{\partial} \mathbf{g}^{\prime \prime}=0$. Let $\mathbf{g}^{\prime \prime \prime} \in \Lambda_{(0,0)}^{2}$ solve $\bar{\partial} \mathbf{g}^{\prime \prime \prime}=\mathbf{g}^{\prime \prime}$, and set $\mathbf{g}_{0}=$ $\mathbf{g}^{\prime}-P_{\mathrm{f}} \mathbf{g}^{\prime \prime \prime} \in \Lambda_{(0,0)}^{1}$. Then $P_{\mathrm{f}} \mathbf{g}_{0}=\chi_{\lambda}$, and $\bar{\partial} \mathbf{g}_{0}=\bar{\partial} \chi_{\lambda} \wedge \Phi-\left(1-(\lambda+4) \widehat{A^{2}}\right) P_{\mathrm{f}} \mathbf{y}$. Let $\mathbf{x} \in \Lambda_{(0,0)}^{1}$ solve

$$
\bar{\partial} \mathbf{x}=P_{\mathrm{f}} \mathbf{y}-\left(1-(\lambda+4) \widehat{A^{2}}\right)^{-1} \bar{\partial} \chi_{\lambda} \wedge \mathbf{\Phi}
$$

again the singularity of the inverted analytic function is absorbed by the factor $\bar{\partial} \chi_{\lambda}$. Also, the right-hand side is $\bar{\partial}$-closed due to its connection with $\bar{\partial} \mathbf{g}_{0}$. If we set $\mathbf{g}=\mathbf{g}_{0}+\left(1-(\lambda+4) \widehat{A^{2}}\right) \mathbf{x} \in \Lambda_{(0,0)}^{1}$, then $\bar{\partial} \mathbf{g}=0$ and

$$
P_{\mathbf{f}} \mathbf{g}=\chi_{\lambda}+\left(1-(\lambda+4) \widehat{A^{2}}\right) P_{\mathbf{f}} \mathbf{x}
$$

